OpenCV2|学习OpenCV2——MeanShift之图形分割

1. 原理 用meanshift做图像平滑和分割,其实是一回事。其本质是经过迭代,将收敛点的像素值代替原来的像素值,从而去除了局部相似的纹理,同时保留了边缘等差异较大的特征。
OpenCV2|学习OpenCV2——MeanShift之图形分割
文章图片


OpenCV中自带有基于meanshift的分割方法pyrMeanShiftFiltering()。由函数名pyrMeanShiftFiltering可知,这里是将meanshift算法和图像金字塔相结合用来分割的。

void PyrMeanShiftFiltering( const CvArr* srcarr,//输入图像 CvArr* dstarr,//输出图像 doublesp,//颜色域半径 double sr,//空间域半径 int max_level,//金字塔最大层数 CvTermCriteria termcrit )//迭代终止条件


要求输入和输出图像都是CV_8UC3类型,而且两者尺寸一样。实际上并不需要去先定义dstarr,因为程序里会将srcarr的格式赋值给dstarr。
termcrit有三种情况,迭代次数、迭代精度和两者同时满足。默认为迭代次数为5同时迭代精度为1。termcrit是个结构体,其结构如下

typedef struct CvTermCriteria { inttype; /*CV_TERMCRIT_ITER或CV_TERMCRIT_EPS 或二者都是*/ intmax_iter; /* 最大迭代次数 */ double epsilon; /* 结果的精确性 */ } CvTermCriteria;

使用pyrMeanShiftFiltering()进行图像分割非常简单,只需要定义sp0,sr,max_level和termrit,然后调用pyrMeanShiftFiltering()就行了。
在实际操作时,为了使分割的结果显示得更明显,经常用floodFill( )将不同连通域涂上不同的颜色。具体情况参看下 面的实例。


2. 程序实例 来看看OpenCV自带的一个用meanshift进行分割的例子
原程序见“.\OpenCV249\sources\samples\cpp\meanshift_segmentation.cpp”


#include "opencv2/highgui/highgui.hpp" #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp"#include using namespace cv; using namespace std; static void help(char** argv) { cout << "\nDemonstrate mean-shift based color segmentation in spatial pyramid.\n" << "Call:\n" << argv[0] << " image\n" << "This program allows you to set the spatial and color radius\n" << "of the mean shift window as well as the number of pyramid reduction levels explored\n" << endl; }//This colors the segmentations static void floodFillPostprocess( Mat& img, const Scalar& colorDiff=Scalar::all(1) ) { CV_Assert( !img.empty() ); RNG rng = theRNG(); Mat mask( img.rows+2, img.cols+2, CV_8UC1, Scalar::all(0) ); for( int y = 0; y < img.rows; y++ ) { for( int x = 0; x < img.cols; x++ ) { if( mask.at(y+1, x+1) == 0 ) { Scalar newVal( rng(256), rng(256), rng(256) ); floodFill( img, mask, Point(x,y), newVal, 0, colorDiff, colorDiff ); } } } }string winName = "meanshift"; int spatialRad, colorRad, maxPyrLevel; Mat img, res; static void meanShiftSegmentation( int, void* ) { cout << "spatialRad=" << spatialRad << "; " << "colorRad=" << colorRad << "; " << "maxPyrLevel=" << maxPyrLevel << endl; pyrMeanShiftFiltering( img, res, spatialRad, colorRad, maxPyrLevel ); //Mat imgGray; //cvtColor(res,imgGray,CV_RGB2GRAY); //imshow("res",res); floodFillPostprocess( res, Scalar::all(2) ); imshow( winName, res ); }int main(int argc, char** argv) { img = imread("rubberwhale1.png"); //img = imread("pic2.png"); if( img.empty() ) return -1; spatialRad = 10; colorRad = 10; maxPyrLevel = 1; namedWindow( winName, WINDOW_AUTOSIZE ); //imshow("img",img); createTrackbar( "spatialRad", winName, &spatialRad, 80, meanShiftSegmentation ); createTrackbar( "colorRad", winName, &colorRad, 60, meanShiftSegmentation ); createTrackbar( "maxPyrLevel", winName, &maxPyrLevel, 5, meanShiftSegmentation ); meanShiftSegmentation(0, 0); //floodFillPostprocess( img, Scalar::all(2) ); //imshow("img2",img); waitKey(); return 0; }




程序很简单,来看看floodFill()函数,有两种形式
int floodFill( InputOutputArray image, Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0, Scalar loDiff=Scalar(), Scalar upDiff=Scalar(), int flags=4 );
int floodFill( InputOutputArray image,InputOutputArray mask, Point seedPoint,Scalar newVal, CV_OUT Rect* rect=0,Scalar loDiff=Scalar(),Scalar upDiff=Scalar(),int flags=4 ); InputOutputArray image输入输出图像,要求格式为1通道或3通道,8位或浮点
InputOutputArray mask掩膜,比image的宽和高各大两像素点
Point seedPoint填充的起始点

Scalar newVal像素点被染色的值

CV_OUT Rect* rect=0可选参数,设置floodFill()要重绘区域的最小边界矩形区域

Scalar loDiff=Scalar()定义当前像素值与起始点像素值的亮度或颜色负差的最大值

Scalar upDiff=Scalar()定义当前像素值与起始点像素值的亮度或颜色正差的最大值

flags 操作标志符


程序结果


处理后一些细小的纹理都平滑掉了,例如图中绿色线条所指示的区域。未填充时,很多地方看得并不明显,填充后就能明显看出差别来了。填充后的图很好地体现了meanshift聚类的思想!

再来看一组更“夸张”的效果图
OpenCV2|学习OpenCV2——MeanShift之图形分割
文章图片


使用meanshift方法进行处理后,原来的三个矩形区域消失了!平滑掉了!

meanshift算法的两个关键参数是空间域半径sr和颜色域半径sp,别说max_level,那是构建图像金字塔的参数好吧。最后,我们来看看sr和sp对结果的影响。
OpenCV2|学习OpenCV2——MeanShift之图形分割
文章图片


显然颜色域半径sp对结果的影响比空间域半径sr对结果的影响大。sp和sr越小,细节保留得越多,sp和sr越大,平滑力度越大。边缘和颜色突变的区域的特征保留的较好。因为meanshift要对每个像素点进行操作,所以算法的时间花销很大。


3. 深入代码
/****************************************************************************************\ *Meanshift* \****************************************************************************************/CV_IMPL void cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr, double sp0, double sr, int max_level, CvTermCriteria termcrit ) { const int cn = 3; const int MAX_LEVELS = 8; if( (unsigned)max_level > (unsigned)MAX_LEVELS ) CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" ); //限定max_level不超过8std::vector src_pyramid(max_level+1); //+1是因为原始图和最终图都定义为图像金字塔的第0层 std::vector dst_pyramid(max_level+1); cv::Mat mask0; int i, j, level; //uchar* submask = 0; #define cdiff(ofs0) (tab[c0-dptr[ofs0]+255] + \ tab[c1-dptr[(ofs0)+1]+255] + tab[c2-dptr[(ofs0)+2]+255] >= isr22)double sr2 = sr * sr; int isr2 = cvRound(sr2), isr22 = MAX(isr2,16); int tab[768]; cv::Mat src0 = cv::cvarrToMat(srcarr); //arr转Mat cv::Mat dst0 = cv::cvarrToMat(dstarr); //确保src和dst都是CV_8UC3,且同尺寸 if( src0.type() != CV_8UC3 ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" ); if( src0.type() != dst0.type() ) CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" ); if( src0.size() != dst0.size() ) CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" ); //确保迭代次数在1到100次,默认则为5;迭代精度默认为1. if( !(termcrit.type & CV_TERMCRIT_ITER) ) termcrit.max_iter = 5; termcrit.max_iter = MAX(termcrit.max_iter,1); termcrit.max_iter = MIN(termcrit.max_iter,100); if( !(termcrit.type & CV_TERMCRIT_EPS) ) termcrit.epsilon = 1.f; termcrit.epsilon = MAX(termcrit.epsilon, 0.f); for( i = 0; i < 768; i++ ) tab[i] = (i - 255)*(i - 255); //tab[]存的是(-255)^2到512^2// 1. 构造金字塔 src_pyramid[0] = src0; dst_pyramid[0] = dst0; for( level = 1; level <= max_level; level++ ) { //src_pyramid和dst_pyramid尺寸一样,下一层是上一层尺寸的一半 src_pyramid[level].create( (src_pyramid[level-1].rows+1)/2, (src_pyramid[level-1].cols+1)/2, src_pyramid[level-1].type() ); dst_pyramid[level].create( src_pyramid[level].rows, src_pyramid[level].cols, src_pyramid[level].type() ); //对src_pyramid[level-1]下采样,结果存入src_pyramid[level] cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() ); //CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA )); }mask0.create(src0.rows, src0.cols, CV_8UC1); //CV_CALL( submask = (uchar*)cvAlloc( (sp+2)*(sp+2) )); // 2. 从顶层(最小层)开始应用meanshift算法。 for( level = max_level; level >= 0; level-- ) { cv::Mat src = https://www.it610.com/article/src_pyramid[level]; cv::Size size = src.size(); uchar* sptr = src.data; //sptr指向图像矩阵的起始地址,也就是第一行的起始地址 int sstep = (int)src.step; //sstep是图像矩阵每一行的长度(以字节为单位),以便后面计算地址 uchar* mask = 0; int mstep = 0; uchar* dptr; int dstep; float sp = (float)(sp0 / (1 << level)); sp = MAX( sp, 1 ); //这里保证了sp≥1,那么窗口最小是3×3//这段语句主要作用1、通过上采样得到dst_pyramid[level];2、得到掩码mask if( level < max_level ) { cv::Size size1 = dst_pyramid[level+1].size(); cv::Mat m( size.height, size.width, CV_8UC1, mask0.data ); dstep = (int)dst_pyramid[level+1].step; dptr = dst_pyramid[level+1].data + dstep + cn; mstep = (int)m.step; mask = m.data + mstep; //cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC ); cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() ); //上采样 m.setTo(cv::Scalar::all(0)); for( i = 1; i < size1.height-1; i++, dptr += dstep - (size1.width-2)*3, mask += mstep*2 ) { for( j = 1; j < size1.width-1; j++, dptr += cn ) { int c0 = dptr[0], c1 = dptr[1], c2 = dptr[2]; mask[j*2 - 1] = cdiff(-3) || cdiff(3) || cdiff(-dstep-3) || cdiff(-dstep) || cdiff(-dstep+3) || cdiff(dstep-3) || cdiff(dstep) || cdiff(dstep+3); } }cv::dilate( m, m, cv::Mat() ); //对m膨胀 mask = m.data; }dptr = dst_pyramid[level].data; //dptr指向图像矩阵起始地址 dstep = (int)dst_pyramid[level].step; //dstep表示图像矩阵每一行的占内存的字节数for( i = 0; i < size.height; i++, sptr += sstep - size.width*3, dptr += dstep - size.width*3,//每处理完一行,sptr和dptr都指向下一行的起始地址 mask += mstep ) { for( j = 0; j < size.width; j++, sptr += 3, dptr += 3 )//每处理完一列,sptr和dptr都指向同行下一列像素的起始地址,所以sptr和dptr实际就是每个像素点的地址 { int x0 = j, y0 = i, x1, y1, iter; int c0, c1, c2; if( mask && !mask[j] ) continue; c0 = sptr[0], c1 = sptr[1], c2 = sptr[2]; //分别对应像素点三通道的地址// iterate meanshift procedure for( iter = 0; iter < termcrit.max_iter; iter++ ) { uchar* ptr; int x, y, count = 0; int minx, miny, maxx, maxy; int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0; //(x,y)的迭代的坐标值,(s0,s1,s2)是迭代的3通道分量值 double icount; int stop_flag; //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp) minx = cvRound(x0 - sp); minx = MAX(minx, 0); //若j-sp>=0,则minx=(j-sp),否则,minx=0; miny = cvRound(y0 - sp); miny = MAX(miny, 0); //若i-sp>=0,则miny=(i-sp),否则,miny=0; maxx = cvRound(x0 + sp); maxx = MIN(maxx, size.width-1); //若j+sp<=width+1,则maxx=j+sp,否则,maxx=width-1; maxy = cvRound(y0 + sp); maxy = MIN(maxy, size.height-1); //若i+sp<=height+1,则maxy=i+sp,否则,maxy=height-1; ptr = sptr + (miny - i)*sstep + (minx - j)*3; //sptr指向(i,j),ptr则指向当前窗口第一个像素点for( y = miny; y <= maxy; y++, ptr += sstep - (maxx-minx+1)*3 )//窗口内,每处理完一行,ptr指向下一行首地址 { int row_count = 0; x = minx; #if CV_ENABLE_UNROLLED for( ; x + 3 <= maxx; x += 4, ptr += 12 )//这两次for循环是什么意思?颜色限定和空间限定? { int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2]; if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) { s0 += t0; s1 += t1; s2 += t2; sx += x; row_count++; } t0 = ptr[3], t1 = ptr[4], t2 = ptr[5]; if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) { s0 += t0; s1 += t1; s2 += t2; sx += x+1; row_count++; } t0 = ptr[6], t1 = ptr[7], t2 = ptr[8]; if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) { s0 += t0; s1 += t1; s2 += t2; sx += x+2; row_count++; } t0 = ptr[9], t1 = ptr[10], t2 = ptr[11]; if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) { s0 += t0; s1 += t1; s2 += t2; sx += x+3; row_count++; } } #endif for( ; x <= maxx; x++, ptr += 3 ) { int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2]; if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) { s0 += t0; s1 += t1; s2 += t2; sx += x; row_count++; } } count += row_count; sy += y*row_count; }if( count == 0 ) break; icount = 1./count; x1 = cvRound(sx*icount); y1 = cvRound(sy*icount); s0 = cvRound(s0*icount); s1 = cvRound(s1*icount); s2 = cvRound(s2*icount); stop_flag = (x0 == x1 && y0 == y1) || abs(x1-x0) + abs(y1-y0) + tab[s0 - c0 + 255] + tab[s1 - c1 + 255] + tab[s2 - c2 + 255] <= termcrit.epsilon; x0 = x1; y0 = y1; c0 = s0; c1 = s1; c2 = s2; if( stop_flag ) break; }dptr[0] = (uchar)c0; dptr[1] = (uchar)c1; dptr[2] = (uchar)c2; } } } }void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst, double sp, double sr, int maxLevel, TermCriteria termcrit ) { Mat src = https://www.it610.com/article/_src.getMat(); if( src.empty() ) return; _dst.create( src.size(), src.type() ); CvMat c_src = src, c_dst = _dst.getMat(); cvPyrMeanShiftFiltering( &c_src, &c_dst, sp, sr, maxLevel, termcrit ); }






【OpenCV2|学习OpenCV2——MeanShift之图形分割】

    推荐阅读