ref:
#1 google colab及基本使用https://blog.csdn.net/nominior/article/details/105197850
#2 YOLOV3训练自己的数据集(PyTorch版本)https://www.pianshen.com/article/1287380494/
#3 DARKNET YOLOV3-TINY 训练自己的数据集步骤 https://www.freesion.com/article/4196394355/
#4 KeyError: 'module_list.85.Conv2d.weight' #657https://www.cnblogs.com/dgwblog/p/12225767.html
#5 深度学习中的遥感影像数据集https://blog.csdn.net/nominior/article/details/105247990
1 数据准备:
a) 数据下载 下载代码:https://github.com/ultralytics/yolov3
下载权重文件:下载yolov3-tiny.pt权重文件,https://drive.google.com/drive/folders/1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0
下载数据集:#2中有自己制作数据集的教程,本文使用的是#5中RSOD-Dataset的部分数据集
- aircraft dataset:https://pan.baidu.com/s/1eRWFV5C
- playground:https://pan.baidu.com/s/1nuD4KLb
文章图片
移动权重:将下载的yolov3-tiny.pt文件移动到weights文件夹下
数据集整理:
在data下
- 新建Annotations、images、ImageSets、labels文件夹,
- 新建文本文件DIY_yolo.data、DIY_yolo.names,使用记事本打开,分别写入如下内容(name中为自己的类别名)
classes=2
train=data/train.txt
valid=data/test.txt
names=data/DIY_yolo.names
aircraft
playground
文章图片
修改cfg/yolov3-tiny.cfg配置
找到[yolo]下的classes,改为类别数;找到[yolo]上的filters,改为(类别数+5)*3
注意!有2处yolo,都需要修改(修改2个classes,2个filters)
文章图片
文章图片
解压数据集
- 将各类数据子集中的图片(JPEGImages文件夹中)复制到data/images中;
- 将各类数据子集中的xml标记(Annotation/xml文件夹中)复制到data/Annotations中;
c) 数据集预处理 在yolov3-master中,新建makeTxt.py文件,写入如下代码
import os
import randomtrainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftest.write(name)
else:
fval.write(name)
else:
ftrain.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
在yolov3-master中,新建voc_label.py文件,写入如下代码
import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'test', 'val']classes = ["aircraft","playground"]# 类别名def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)def convert_annotation(image_id):
in_file = open('data/Annotations/%s.xml' % (image_id))
out_file = open('data/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text),
float(xmlbox.find('xmax').text),
float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
print(wd)
for image_set in sets:
if not os.path.exists('data/labels/'):
os.makedirs('data/labels/')
image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
list_file = open('data/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write('data/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()
文章图片
2 数据上传及运行: *本地也可以运行,但可能显存不足,报cuda memory错误
a)上传数据 压缩yolov3-master文件夹
上传yolov3-master压缩包,到google drive中(时间较长)
上传完成后,打开google colab,新建notebook,使用GPU运行时,挂载google drive并切换到压缩包所在的路径(参考#1)
b)运行代码 环境准备:
根据个人路径,在colab notebook中依次运行如下代码,
import os
path = r'/content/drive/My Drive'
os.chdir(path)
!ls
!nvidia-smi
!unzip yolov3-master.zip
path = r'/content/drive/My Drive/yolov3-master'
os.chdir(path)
!ls
!pip install -r requirements.txt
文章图片
数据准备:
运行如下代码
#数据集划分,在data/ImageSets下生成txt
!python makeTxt.py
#label生成,在data/labels生成可训练的txt标记,并在data下生成train、val、test.txt
!python voc_label.py
文章图片
train: 运行代码
!python train.py --data data/DIY_yolo.data --cfg cfg/yolov3-tiny.cfg --weights weights/yolov3-tiny.pt --epochs 20
生成weigths/last.pt、weigths/best.pt,train_batch0.jpg,result.png,result.txt
文章图片
test: 运行代码
!python test.py --data data/DIY_yolo.data --cfg cfg/yolov3-tiny.cfg --weights weights/best.pt --save-json
生成test_batch0_gt.jpg,test_batch0_pred.jpg,results.json
文章图片
infer: 新建source_dir、output_dir,将需要推理的图像移入source_dir(本文随机选择1张aircraft、1张playground复制到source_dir)
运行代码
!python detect.py--cfg cfg/yolov3-tiny.cfg --names data/DIY_yolo.names --weights weights/best.pt --source source_dir --output output_dir
在output_dir生成同名预测结果
【Pytorch|使用google colab + yolov3_tiny(pytorch) 训练自己的目标检测数据集】
文章图片
推荐阅读
- pytorch|使用pytorch从头实现多层LSTM
- SG平滑轨迹算法的原理和实现
- pytorch|YOLOX 阅读笔记
- Keras|将Pytorch模型迁移到android端(android studio)【未实现】
- Android|将Pytorch模型部署到Android端
- nvidia|nvidia jetson xavier nx安装pytorch
- python|PyTorch单机多卡分布式训练教程及代码示例
- 深度瞎搞|PyTorch单机多卡训练(DDP-DistributedDataParallel的使用)备忘记录
- Pytorch图像分割实践|Pytorch自定义层或者模型类
- 安装问题|win10+cuda11.1+anaconda+pytorch+pycharm配置环境