Deep|Caffe研究之blob

Caffe研究之blob
转载请注明:http://blog.csdn.net/forest_world
Caffe:Blob、Layer、Net。
【Deep|Caffe研究之blob】Blob是一个四维的数组,用于存储数据,包括输入数据、输出数据、权值等;
Blob是Caffe中处理和传递实际数据的数据封装包,并且在CPU与GPU之间具有同步处理能力。从数学意义上说,blob是按C风格连续存储的N维数组。

template class Blob { public: Blob() : data_(), diff_(), count_(0), capacity_(0) {}/// @brief Deprecated; use Blob(const vector& shape). explicit Blob(const int num, const int channels, const int height, const int width); explicit Blob(const vector& shape); /// @brief Deprecated; use Reshape(const vector& shape). void Reshape(const int num, const int channels, const int height, const int width); /** * @brief Change the dimensions of the blob, allocating new memory if *necessary. * * This function can be called both to create an initial allocation * of memory, and to adjust the dimensions of a top blob during Layer::Reshape * or Layer::Forward. When changing the size of blob, memory will only be * reallocated if sufficient memory does not already exist, and excess memory * will never be freed. * * Note that reshaping an input blob and immediately calling Net::Backward is * an error; either Net::Forward or Net::Reshape need to be called to * propagate the new input shape to higher layers. */ void Reshape(const vector& shape); void Reshape(const BlobShape& shape); void ReshapeLike(const Blob& other); inline string shape_string() const { ostringstream stream; for (int i = 0; i < shape_.size(); ++i) { stream << shape_[i] << " "; } stream << "(" << count_ << ")"; return stream.str(); } inline const vector& shape() const { return shape_; } /** * @brief Returns the dimension of the index-th axis (or the negative index-th *axis from the end, if index is negative). * * @param index the axis index, which may be negative as it will be *"canonicalized" using CanonicalAxisIndex. *Dies on out of range index. */ inline int shape(int index) const { return shape_[CanonicalAxisIndex(index)]; } inline int num_axes() const { return shape_.size(); } inline int count() const { return count_; }/** * @brief Compute the volume of a slice; i.e., the product of dimensions *among a range of axes. * * @param start_axis The first axis to include in the slice. * * @param end_axis The first axis to exclude from the slice. */ inline int count(int start_axis, int end_axis) const { CHECK_LE(start_axis, end_axis); CHECK_GE(start_axis, 0); CHECK_GE(end_axis, 0); CHECK_LE(start_axis, num_axes()); CHECK_LE(end_axis, num_axes()); int count = 1; for (int i = start_axis; i < end_axis; ++i) { count *= shape(i); } return count; } /** * @brief Compute the volume of a slice spanning from a particular first *axis to the final axis. * * @param start_axis The first axis to include in the slice. */ inline int count(int start_axis) const { return count(start_axis, num_axes()); }/** * @brief Returns the 'canonical' version of a (usually) user-specified axis, *allowing for negative indexing (e.g., -1 for the last axis). * * @param axis_index the axis index. *If 0 <= index < num_axes(), return index. *If -num_axes <= index <= -1, return (num_axes() - (-index)), *e.g., the last axis index (num_axes() - 1) if index == -1, *the second to last if index == -2, etc. *Dies on out of range index. */ inline int CanonicalAxisIndex(int axis_index) const { CHECK_GE(axis_index, -num_axes()) << "axis " << axis_index << " out of range for " << num_axes() << "-D Blob with shape " << shape_string(); CHECK_LT(axis_index, num_axes()) << "axis " << axis_index << " out of range for " << num_axes() << "-D Blob with shape " << shape_string(); if (axis_index < 0) { return axis_index + num_axes(); } return axis_index; }/// @brief Deprecated legacy shape accessor num: use shape(0) instead. inline int num() const { return LegacyShape(0); } /// @brief Deprecated legacy shape accessor channels: use shape(1) instead. inline int channels() const { return LegacyShape(1); } /// @brief Deprecated legacy shape accessor height: use shape(2) instead. inline int height() const { return LegacyShape(2); } /// @brief Deprecated legacy shape accessor width: use shape(3) instead. inline int width() const { return LegacyShape(3); } inline int LegacyShape(int index) const { CHECK_LE(num_axes(), 4) << "Cannot use legacy accessors on Blobs with > 4 axes."; CHECK_LT(index, 4); CHECK_GE(index, -4); if (index >= num_axes() || index < -num_axes()) { // Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse // indexing) -- this special case simulates the one-padding used to fill // extraneous axes of legacy blobs. return 1; } return shape(index); }inline int offset(const int n, const int c = 0, const int h = 0, const int w = 0) const { CHECK_GE(n, 0); CHECK_LE(n, num()); CHECK_GE(channels(), 0); CHECK_LE(c, channels()); CHECK_GE(height(), 0); CHECK_LE(h, height()); CHECK_GE(width(), 0); CHECK_LE(w, width()); return ((n * channels() + c) * height() + h) * width() + w; }inline int offset(const vector& indices) const { CHECK_LE(indices.size(), num_axes()); int offset = 0; for (int i = 0; i < num_axes(); ++i) { offset *= shape(i); if (indices.size() > i) { CHECK_GE(indices[i], 0); CHECK_LT(indices[i], shape(i)); offset += indices[i]; } } return offset; } /** * @brief Copy from a source Blob. * * @param source the Blob to copy from * @param copy_diff if false, copy the data; if true, copy the diff * @param reshape if false, require this Blob to be pre-shaped to the shape *of other (and die otherwise); if true, Reshape this Blob to other's *shape if necessary */ void CopyFrom(const Blob& source, bool copy_diff = false, bool reshape = false); inline Dtype data_at(const int n, const int c, const int h, const int w) const { return cpu_data()[offset(n, c, h, w)]; }inline Dtype diff_at(const int n, const int c, const int h, const int w) const { return cpu_diff()[offset(n, c, h, w)]; }inline Dtype data_at(const vector& index) const { return cpu_data()[offset(index)]; }inline Dtype diff_at(const vector& index) const { return cpu_diff()[offset(index)]; }inline const shared_ptr& data() const { CHECK(data_); return data_; }inline const shared_ptr& diff() const { CHECK(diff_); return diff_; }const Dtype* cpu_data() const; void set_cpu_data(Dtype* data); const int* gpu_shape() const; const Dtype* gpu_data() const; const Dtype* cpu_diff() const; const Dtype* gpu_diff() const; Dtype* mutable_cpu_data(); Dtype* mutable_gpu_data(); Dtype* mutable_cpu_diff(); Dtype* mutable_gpu_diff(); void Update(); void FromProto(const BlobProto& proto, bool reshape = true); void ToProto(BlobProto* proto, bool write_diff = false) const; /// @brief Compute the sum of absolute values (L1 norm) of the data. Dtype asum_data() const; /// @brief Compute the sum of absolute values (L1 norm) of the diff. Dtype asum_diff() const; /// @brief Compute the sum of squares (L2 norm squared) of the data. Dtype sumsq_data() const; /// @brief Compute the sum of squares (L2 norm squared) of the diff. Dtype sumsq_diff() const; /// @brief Scale the blob data by a constant factor. void scale_data(Dtype scale_factor); /// @brief Scale the blob diff by a constant factor. void scale_diff(Dtype scale_factor); /** * @brief Set the data_ shared_ptr to point to the SyncedMemory holding the *data_ of Blob other -- useful in Layer%s which simply perform a copy *in their Forward pass. * * This deallocates the SyncedMemory holding this Blob's data_, as * shared_ptr calls its destructor when reset with the "=" operator. */ void ShareData(const Blob& other); /** * @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the *diff_ of Blob other -- useful in Layer%s which simply perform a copy *in their Forward pass. * * This deallocates the SyncedMemory holding this Blob's diff_, as * shared_ptr calls its destructor when reset with the "=" operator. */ void ShareDiff(const Blob& other); bool ShapeEquals(const BlobProto& other); protected: shared_ptr data_; shared_ptr diff_; shared_ptr shape_data_; vector shape_; int count_; int capacity_; DISABLE_COPY_AND_ASSIGN(Blob); }; // class Blob

Layer层则是神经网络中具体的各层结构,主要是计算的作用,在根据配置文件初始化结构后,前向计算结果,反向更新参数,都是它要做的,而它的输入和输出都是Blob数据;
Net层,多个Layer组合而成的有向无环图结构,具体的网络。
caffe实现了差不多40种不同的Layer层,里面有不同的激活函数。
Classifier::Classifier(const string& model_file, const string& trained_file, const string& mean_file, const string& label_file) { #ifdef CPU_ONLY Caffe::set_mode(Caffe::CPU); #else Caffe::set_mode(Caffe::GPU); #endif/* Load the network. */ net_.reset(new Net(model_file, TEST)); net_->CopyTrainedLayersFrom(trained_file); CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input."; CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output."; Blob* input_layer = net_->input_blobs()[0]; num_channels_ = input_layer->channels(); CHECK(num_channels_ == 3 || num_channels_ == 1) << "Input layer should have 1 or 3 channels."; input_geometry_ = cv::Size(input_layer->width(), input_layer->height()); /* Load the binaryproto mean file. */ SetMean(mean_file); /* Load labels. */ std::ifstream labels(label_file.c_str()); CHECK(labels) << "Unable to open labels file " << label_file; string line; while (std::getline(labels, line)) labels_.push_back(string(line)); Blob* output_layer = net_->output_blobs()[0]; CHECK_EQ(labels_.size(), output_layer->channels()) << "Number of labels is different from the output layer dimension."; }

函数说明:
Reshape()可以改变一个blob的大小:
template void Blob::Reshape(const int num, const int channels, const int height, const int width) { vector shape(4); shape[0] = num; shape[1] = channels; shape[2] = height; shape[3] = width; Reshape(shape); }template void Blob::Reshape(const vector& shape) { CHECK_LE(shape.size(), kMaxBlobAxes); count_ = 1; shape_.resize(shape.size()); if (!shape_data_ || shape_data_->size() < shape.size() * sizeof(int)) { shape_data_.reset(new SyncedMemory(shape.size() * sizeof(int))); } int* shape_data = https://www.it610.com/article/static_cast(shape_data_->mutable_cpu_data()); for (int i = 0; i < shape.size(); ++i) { CHECK_GE(shape[i], 0); if (count_ != 0) { CHECK_LE(shape[i], INT_MAX / count_) << "blob size exceeds INT_MAX"; } count_ *= shape[i]; shape_[i] = shape[i]; shape_data[i] = shape[i]; } if (count_ > capacity_) { capacity_ = count_; data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype))); diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype))); } }template void Blob::Reshape(const BlobShape& shape) { CHECK_LE(shape.dim_size(), kMaxBlobAxes); vector shape_vec(shape.dim_size()); for (int i = 0; i < shape.dim_size(); ++i) { shape_vec[i] = shape.dim(i); } Reshape(shape_vec); }

ReshapeLike()为data和diff重新分配一块空间,大小和另一个blob的一样:
template void Blob::ReshapeLike(const Blob& other) { Reshape(other.shape()); }

Num_axes()返回的是blob的大小;
Count()计算得到count=num*channels*height*width。
Offset()可得到输入blob数据(n,c,h,w)的偏移量位置;
CopyFrom()从source拷贝数据,copy_diff来作为标志区分是拷贝data还是diff
template void Blob::CopyFrom(const Blob& source, bool copy_diff, bool reshape) { if (source.count() != count_ || source.shape() != shape_) { if (reshape) { ReshapeLike(source); } else { LOG(FATAL) << "Trying to copy blobs of different sizes."; } } switch (Caffe::mode()) { case Caffe::GPU: if (copy_diff) { caffe_copy(count_, source.gpu_diff(), static_cast(diff_->mutable_gpu_data())); } else { caffe_copy(count_, source.gpu_data(), static_cast(data_->mutable_gpu_data())); } break; case Caffe::CPU: if (copy_diff) { caffe_copy(count_, source.cpu_diff(), static_cast(diff_->mutable_cpu_data())); } else { caffe_copy(count_, source.cpu_data(), static_cast(data_->mutable_cpu_data())); } break; default: LOG(FATAL) << "Unknown caffe mode."; } }

FromProto()从proto读数据进来,其实就是反序列化:
Deep|Caffe研究之blob
文章图片

Deep|Caffe研究之blob
文章图片

template void Blob::FromProto(const BlobProto& proto, bool reshape) { if (reshape) { vector shape; if (proto.has_num() || proto.has_channels() || proto.has_height() || proto.has_width()) { // Using deprecated 4D Blob dimensions -- // shape is (num, channels, height, width). shape.resize(4); shape[0] = proto.num(); shape[1] = proto.channels(); shape[2] = proto.height(); shape[3] = proto.width(); } else { shape.resize(proto.shape().dim_size()); for (int i = 0; i < proto.shape().dim_size(); ++i) { shape[i] = proto.shape().dim(i); } } Reshape(shape); } else { CHECK(ShapeEquals(proto)) << "shape mismatch (reshape not set)"; } // copy data Dtype* data_vec = mutable_cpu_data(); if (proto.double_data_size() > 0) { CHECK_EQ(count_, proto.double_data_size()); for (int i = 0; i < count_; ++i) { data_vec[i] = proto.double_data(i); } } else { CHECK_EQ(count_, proto.data_size()); for (int i = 0; i < count_; ++i) { data_vec[i] = proto.data(i); } } if (proto.double_diff_size() > 0) { CHECK_EQ(count_, proto.double_diff_size()); Dtype* diff_vec = mutable_cpu_diff(); for (int i = 0; i < count_; ++i) { diff_vec[i] = proto.double_diff(i); } } else if (proto.diff_size() > 0) { CHECK_EQ(count_, proto.diff_size()); Dtype* diff_vec = mutable_cpu_diff(); for (int i = 0; i < count_; ++i) { diff_vec[i] = proto.diff(i); } } }

ToProto()把blob数据保存到proto中:
template <> void Blob::ToProto(BlobProto* proto, bool write_diff) const { proto->clear_shape(); for (int i = 0; i < shape_.size(); ++i) { proto->mutable_shape()->add_dim(shape_[i]); } proto->clear_double_data(); proto->clear_double_diff(); const double* data_vec = cpu_data(); for (int i = 0; i < count_; ++i) { proto->add_double_data(data_vec[i]); } if (write_diff) { const double* diff_vec = cpu_diff(); for (int i = 0; i < count_; ++i) { proto->add_double_diff(diff_vec[i]); } } }template <> void Blob::ToProto(BlobProto* proto, bool write_diff) const { proto->clear_shape(); for (int i = 0; i < shape_.size(); ++i) { proto->mutable_shape()->add_dim(shape_[i]); } proto->clear_data(); proto->clear_diff(); const float* data_vec = cpu_data(); for (int i = 0; i < count_; ++i) { proto->add_data(data_vec[i]); } if (write_diff) { const float* diff_vec = cpu_diff(); for (int i = 0; i < count_; ++i) { proto->add_diff(diff_vec[i]); } } }

ShareDate()/ShareDiff()从other的blob复制data和diff的值;

    推荐阅读