注:转自http://www.cnblogs.com/vivounicorn/archive/2011/03/22/1991479.html
Cholesky分解1、为什么要进行矩阵分解 个人认为,首先,当数据量很大时,将一个矩阵分解为若干个矩阵的乘积可以大大降低存储空间;其次,可以减少真正进行问题处理时的计算量,毕竟算法扫描的元 素越少完成任务的速度越快,这个时候矩阵的分解是对数据的一个预处理;再次,矩阵分解可以高效和有效的解决某些问题;最后,矩阵分解可以提高算法数值稳定 性,关于这一点可以有进一步的说明,
借用一个上学时老师给的例子:
有方程组:
令,,
解方程组可得:
现在对b进行微小扰动:
,扰动项为:
此时相应的解为:
。
这个例子说明,当方程组常数项发生微小变动的时候会导致求出的结果差别相当大,而导致这种差别的并不是求解方法,而是方程组系数矩阵本身的问题,这会给我 们解决问题带来很大危害,例如,我们在用计算机求解这类问题时难以避免在计算当中出现舍入误差,如果矩阵本身性质不好会直接导致所答非所问。
对常数向量b和矩阵A进行一个简单的扰动分析:
1)、扰动b,原方程组为:
(式子1),( ,A非奇异)
扰动后为:
(式子2)
把式子1带入式子2得: ,用2-范式来衡量这种变化得: ,由于 ,于是得到:
而利用式子1同理可得 ,整理后得:
,可见b的扰动对解的影响由 决定。
2)、扰动A,扰动后为:
(式子3),( ,A非奇异)
稍微做一下变换:
把式子1带入后得到:
对两边同时取2-范式有:
于是有:
,整理一下就是:
,A的扰动对解的影响依然是由 决定。
3)、对于同时扰动A和b的情况偶就不推了,最后的结果依然是,扰动对解的影响依然由 决定。
定义矩阵的条件数 来描述矩阵的病态程度,一般认为条件数小于100为良态,条件数在100到1000之间为中等程度的病态,条件数超过1000存在严重病态。以上面的矩阵A为例,采用2-范数 表示的条件数为: ,看来矩阵处于中等病态程度。
矩阵其实就是一个给定的线性变换,特征向量描述了这个线性变换的主要方向,而特征值描述了一个特征向量的长度在该线性变换下缩放的比例,有关特征值和特征向量的相关概念可查看http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors ,对开篇的例子进一步观察发现,A是个对称正定矩阵,A的特征值分别为 :14.93303437 和 :0.06696563,两个特征值在数量级上相差很大,这意味着b发生扰动时,向量x在这两个特征向量方向上的移动距离是相差很大的——对于 对应的特征向量只需要微小的移动就可到达b的新值,而对于 ,由于它比起 太小了,因此需要x做大幅度移动才能到达b的新值,于是悲剧就发生了……………..。
关于矩阵可以有以下各种分解方式,①矩阵的三角分解(Cholesky分解、LU分解等),②矩阵的正交三角分解(QR分解等),③矩阵的满秩分解,④矩阵的奇异值分解(SVD)(关于SVD可以查看高人LeftNotEasy 的http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html#2038925 一文以及他提供的参考资料)。
再看矩阵A,它是个对称正定矩阵,对这种矩阵都可以进行Cholesky分解,也就是将矩阵A分解为: ,其中 为一个下三角矩阵,具体操作随后讨论,回头看方程组 ,它就变成了:
,
将它看成两个方程组:
和 ,其中: ,特征值为 :2.2360680和 :0.4472136
此时采用2-范数 表示的条件数为 ,显然上面这两个方程组也都是良态的且只需要存储矩阵 的下三角部分即可,矩阵分解的优点可见一斑。
2、实正定Hermit矩阵的完全Cholesky分解 设矩阵A有如下形式:
借用http://en.wikipedia.org/wiki/Cholesky_decomposition 中的推导:
令 ,在第i次迭代时有:
,其中 为i-1维单位矩阵
定义矩阵 :
于是要满足 ,就有:
这样一直迭代下去,直到 ,也就是有: ,最后得到分解后的下三角矩阵的元素:
当然 也可以是上三角矩阵 ,此时
所以 的元素是:
一种比较直白的分解算法可以是这样的:
设有实对称矩阵:
以及向量 和保存分解结果的矩阵 ,算法伪码描述如下:
1: for i:=1 to n do //逐行计算L的值,w向量初始状态为实hermit矩阵A的上三角部分的一行
2: w(i .. n) := a(i,i .. n);
3: for k:=1 to i-1 do
4: temp := L(k,i);
5: if (temp != 0) then
6: w(i .. n) := w(i .. n) - temp*L(k,i .. n); //计算L(i,j)公式的分子部分
7: endif ;
8: endfor ;
9: w(i) := sqrt(w(i)); //L矩阵对角线元素计算
10: w(i+1 .. n) := w(i+1 .. n) / w(i); //L矩阵非对角线元素计算
11:
12: L(i,i .. n) := w(i .. n); //更新L矩阵
13: w(i .. n) :=0; //清空w向量
14: endfor ;
一个简单的实现如下:
1: //串行完全Chlolesky分解,时间复杂度(O(n^3))
2: double **complete_cholesky_decompose(double **A)
3: {
4: if (NULL==A)
5: return NULL;
6:
7: double **L=malloc_matrix();
8: clear_matrix(L);
9:
10: int i,j,k,m;
11:
12: double *w=malloc_vector();
13:
14: clear_vector(w); //清除向量
15:
16: for (i=0; i
17: for (m=i; m
18: w[m]=A[i][m];
19: }
20:
21: for (k=0; k
22: double temp=L[k][i];
23: if (temp!=0){
24: for (m=i; m
25: w[m] -= temp*L[k][m];
26: }
27: }
28: }
29:
30: w[i]=sqrt(w[i]);
31: for (m=i+1; m
32: w[m] /=w[i];
33: }
34:
35: for (m=i; m
36: L[i][m]=w[m];
37: }
38:
39: clear_vector(w);
40: }
41:
42: return L;
43: }
代码可以在这里下载到。
在实践中,完全Cholesky分解有时并不是必须的,为了提高效率或者有利于编写并行算法等原因,不完全Cholesky(ICF)有时更加实用,关于ICF有很多算法,还有待学习。
3、实用工具和网址 (1)、R
我认为R是进行关于矩阵相关操作的较好工具,它是免费的和开源的(我记的是),功能不亚于matlab,当然它能做的事情远远不止矩阵计算,还可以做分类、聚类、回归、统计分析等等等等,R可以从http://www.r-project.org/ 获取到,同时有linux版本和windows版本。
关于矩阵的一些简单命令我稍微列一下:
1)、创建向量
数据无规律:
1: >x=c(0,1,3,4,6,8,9)
2: > x
3: [1] 0 13 468 9
数据有简单规律(从1~3以0.1的间隔输出):
1: > x=seq(1,3,by=0.1)
2: > x
3: [1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
数据有复杂规律(从0~5,每个数字重复2次):
1: > x=rep(0:5,rep(2,6))
2: > x
3: [1] 0 0 1 1 2 2 3 3 4 4 5 5
2)、创建矩阵
函数原型:
1: > matrix
2: function (data = https://www.it610.com/article/NA, nrow = 1, ncol = 1, byrow = FALSE , dimnames = NULL)
3: {
4: data <- as.vector(data)
5: if (missing(nrow))
6: nrow <- ceiling(length(data)/ncol)
7: else if (missing(ncol))
8: ncol <- ceiling(length(data)/nrow)
9: .Internal(matrix(data, nrow, ncol, byrow, dimnames))
10: }
11:
data存储矩阵数据,nrow和ncol分别为行数和列数,byrows默认为FALSE,表示矩阵数据生成时以列为主序,例如:
1: > data=https://www.it610.com/article/c(
2: + 0.0100,0.1710,0.0967,0.1661,0.1254,0.0728,0.0928,0.1272,0.1041,0.0644,
3: + 0.1710,3.3743,2.3896,3.5556,2.6312,1.6968,1.8502,2.6637,2.5208,1.2792,
4: + 0.0967,2.3896,2.5098,3.0234,2.1745,1.6661,1.5959,2.5601,2.6507,1.0512,
5: + 0.1661,3.5556,3.0234,4.3530,3.4144,2.5287,2.3244,3.6691,3.5036,1.6727,
6: + 0.1254,2.6312,2.1745,3.4144,2.9375,2.4152,1.9473,3.0911,2.9016,1.6776,
7: + 0.0728,1.6968,1.6661,2.5287,2.4152,2.5097,1.7161,2.8719,2.6663,2.0713,
8: + 0.0928,1.8502,1.5959,2.3244,1.9473,1.7161,2.0160,3.2206,2.3529,1.8967,
9: + 0.1272,2.6637,2.5601,3.6691,3.0911,2.8719,3.2206,5.8295,4.0840,3.4258,
10: + 0.1041,2.5208,2.6507,3.5036,2.9016,2.6663,2.3529,4.0840,3.8915,2.7323,
11: + 0.0644,1.2792,1.0512,1.6727,1.6776,2.0713,1.8967,3.4258,2.7323,4.3582
12: + )
13: > a=matrix(data,nrow=10,ncol=10,byrow=TRUE )
14: > a
15: [,1][,2][,3][,4][,5][,6][,7][,8][,9][,10]
16: [1,] 0.0100 0.1710 0.0967 0.1661 0.1254 0.0728 0.0928 0.1272 0.1041 0.0644
17: [2,] 0.1710 3.3743 2.3896 3.5556 2.6312 1.6968 1.8502 2.6637 2.5208 1.2792
18: [3,] 0.0967 2.3896 2.5098 3.0234 2.1745 1.6661 1.5959 2.5601 2.6507 1.0512
19: [4,] 0.1661 3.5556 3.0234 4.3530 3.4144 2.5287 2.3244 3.6691 3.5036 1.6727
20: [5,] 0.1254 2.6312 2.1745 3.4144 2.9375 2.4152 1.9473 3.0911 2.9016 1.6776
21: [6,] 0.0728 1.6968 1.6661 2.5287 2.4152 2.5097 1.7161 2.8719 2.6663 2.0713
22: [7,] 0.0928 1.8502 1.5959 2.3244 1.9473 1.7161 2.0160 3.2206 2.3529 1.8967
23: [8,] 0.1272 2.6637 2.5601 3.6691 3.0911 2.8719 3.2206 5.8295 4.0840 3.4258
24: [9,] 0.1041 2.5208 2.6507 3.5036 2.9016 2.6663 2.3529 4.0840 3.8915 2.7323
25: [10,] 0.0644 1.2792 1.0512 1.6727 1.6776 2.0713 1.8967 3.4258 2.7323 4.3582
3)、矩阵转置
1: > A=matrix(0:11,nrow=3,ncol=4,byrow=TRUE )
2: > A
3: [,1] [,2] [,3] [,4]
4: [1,]0123
5: [2,]4567
6: [3,]891011
7: > t(A)
8: [,1] [,2] [,3]
9: [1,]048
10: [2,]159
11: [3,]2610
12: [4,]3711
4)、矩阵加减
1: > A=matrix(0:11,nrow=3,ncol=4,byrow=TRUE )
2: > B=matrix(1:12,nrow=3,ncol=4,byrow=TRUE )
3: > B-A
4: [,1] [,2] [,3] [,4]
5: [1,]1111
6: [2,]1111
7: [3,]1111
8: > B+A
9: [,1] [,2] [,3] [,4]
10: [1,]1357
11: [2,]9111315
12: [3,]17192123
5)、矩阵相乘
1: > A=matrix(0:11,nrow=3,ncol=4,byrow=TRUE )
2: > B=matrix(1:12,nrow=4,ncol=3,byrow=TRUE )
3: > A%*%B
4: [,1] [,2] [,3]
5: [1,]485460
6: [2,]136158180
7: [3,]224262300
6)、取方阵对角元素
1: > A=matrix(0:8,nrow=3,ncol=3,byrow=TRUE )
2: > A
3: [,1] [,2] [,3]
4: [1,]012
5: [2,]345
6: [3,]678
7: > diag(A)
8: [1] 0 4 8
7)、矩阵求逆
1: > A=matrix(c(1,2,3,0,4,5,0,0,6),nrow=3,ncol=3,byrow=TRUE )
2: > solve(A)
3: [,1][,2][,3]
4: [1,]1 -0.50 -0.08333333
5: [2,]00.25 -0.20833333
6: [3,]00.000.16666667
8)、特征值与特征向量
1: > A=matrix(c(1,2,3,0,4,5,0,0,6),nrow=3,ncol=3,byrow=TRUE )
2: > eigen(A)
3: $values
4: [1] 6 4 1
5:
6: $vectors
7: [,1][,2] [,3]
8: [1,] 0.5108407 0.55470021
9: [2,] 0.7981886 0.83205030
10: [3,] 0.3192754 0.00000000
11:
9)、正定hermit矩阵的完全Cholesky分解
1: > data=https://www.it610.com/article/c(
2: + 0.0100,0.1710,0.0967,0.1661,0.1254,0.0728,0.0928,0.1272,0.1041,0.0644,
3: + 0.1710,3.3743,2.3896,3.5556,2.6312,1.6968,1.8502,2.6637,2.5208,1.2792,
4: + 0.0967,2.3896,2.5098,3.0234,2.1745,1.6661,1.5959,2.5601,2.6507,1.0512,
5: + 0.1661,3.5556,3.0234,4.3530,3.4144,2.5287,2.3244,3.6691,3.5036,1.6727,
6: + 0.1254,2.6312,2.1745,3.4144,2.9375,2.4152,1.9473,3.0911,2.9016,1.6776,
7: + 0.0728,1.6968,1.6661,2.5287,2.4152,2.5097,1.7161,2.8719,2.6663,2.0713,
8: + 0.0928,1.8502,1.5959,2.3244,1.9473,1.7161,2.0160,3.2206,2.3529,1.8967,
9: + 0.1272,2.6637,2.5601,3.6691,3.0911,2.8719,3.2206,5.8295,4.0840,3.4258,
10: + 0.1041,2.5208,2.6507,3.5036,2.9016,2.6663,2.3529,4.0840,3.8915,2.7323,
11: + 0.0644,1.2792,1.0512,1.6727,1.6776,2.0713,1.8967,3.4258,2.7323,4.3582
12: + )
13: > a=matrix(data,nrow=10,ncol=10,byrow=TRUE )
14: > chol(a)
15: [,1][,2][,3][,4][,5][,6][,7][,8][,9][,10]
16: [1,]0.1 1.7100000 0.9670000 1.6610000 1.2540000 0.7280000 0.9280000 1.2720000 1.0410000 0.6440000
17: [2,]0.0 0.6709694 1.0969650 1.0660545 0.7256068 0.6735329 0.3924471 0.7281703 1.1039102 0.2652282
18: [3,]0.0 0.0000000 0.6094086 0.4066049 0.2722586 0.3663913 0.4398089 0.8718268 0.7106926 0.2256384
19: [4,]0.0 0.0000000 0.0000000 0.5406286 0.8273109 0.8369753 0.3436621 0.7871389 0.5710010 0.4226980
20: [5,]0.0 0.0000000 0.0000000 0.0000000 0.2826847 0.7831198 0.3352446 0.2797313 0.4573777 0.9425268
21: [6,]0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.2793255 0.2322540 0.9241146 0.2450380 0.8923532
22: [7,]0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7231424 1.0953043 0.3243910 0.5908204
23: [8,]0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.4119291 0.4303230 0.3608438
24: [9,]0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.4454546 0.8321836
25: [10,]0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.8871720
10)、矩阵奇异值分解
1: > data=https://www.it610.com/article/c(
2: + 0.0100,0.1710,0.0967,0.1661,0.1254,0.0728,0.0928,0.1272,0.1041,0.0644,
3: + 0.1710,3.3743,2.3896,3.5556,2.6312,1.6968,1.8502,2.6637,2.5208,1.2792,
4: + 0.0967,2.3896,2.5098,3.0234,2.1745,1.6661,1.5959,2.5601,2.6507,1.0512,
5: + 0.1661,3.5556,3.0234,4.3530,3.4144,2.5287,2.3244,3.6691,3.5036,1.6727,
6: + 0.1254,2.6312,2.1745,3.4144,2.9375,2.4152,1.9473,3.0911,2.9016,1.6776,
7: + 0.0728,1.6968,1.6661,2.5287,2.4152,2.5097,1.7161,2.8719,2.6663,2.0713,
8: + 0.0928,1.8502,1.5959,2.3244,1.9473,1.7161,2.0160,3.2206,2.3529,1.8967,
9: + 0.1272,2.6637,2.5601,3.6691,3.0911,2.8719,3.2206,5.8295,4.0840,3.4258,
10: + 0.1041,2.5208,2.6507,3.5036,2.9016,2.6663,2.3529,4.0840,3.8915,2.7323,
11: + 0.0644,1.2792,1.0512,1.6727,1.6776,2.0713,1.8967,3.4258,2.7323,4.3582
12: + )
13: > a=matrix(data,nrow=10,ncol=10,byrow=TRUE )
14: > svd(a)
15: $d
16: [1] 2.419118e+01 4.155429e+00 1.305297e+00 1.042439e+00 7.271958e-01 1.724779e-01 1.188910e-01 7.550273e-02 6.811257e-04 4.025360e-04
17:
18: $u
19: [,1][,2][,3][,4][,5][,6][,7][,8][,9][,10]
20: [1,] -0.01423809 -0.017708520.010464210.0440060554 -0.037080110.0039892020.02212364 -0.029657630.609656748 -0.789301225
21: [2,] -0.30655677 -0.388443160.215403020.5860837223 -0.20831346 -0.0713214620.09280202 -0.537055090.0589027910.127479773
22: [3,] -0.27500938 -0.28653235 -0.04046986 -0.00061330850.62767935 -0.424262650 -0.381871840.161645570.2605821260.163683441
23: [4,] -0.39289768 -0.371819670.102182290.0430729100 -0.048306600.258172491 -0.191458850.37788201 -0.530454225 -0.406528598
24: [5,] -0.32434239 -0.184162190.18854340 -0.2694300561 -0.380739240.2731287710.080034280.370397680.4915166200.384701079
25: [6,] -0.280658260.083021710.24277466 -0.6198550162 -0.27053693 -0.402153630 -0.20235690 -0.39991126 -0.144858619 -0.119997665
26: [7,] -0.265735340.09522360 -0.293469090.1374724777 -0.21528535 -0.6004591220.526533960.34671820 -0.089612967 -0.053976475
27: [8,] -0.443721900.30810327 -0.694627760.0748652314 -0.124393100.238340862 -0.32629727 -0.188526190.0596529910.047118889
28: [9,] -0.382719980.066496790.03894330 -0.25310956480.521739330.3073769120.59639765 -0.24228533 -0.036358521 -0.033403328
29: [10,] -0.279061740.692258880.526095470.32761708250.08203487 -0.008974789 -0.147186470.173743700.0089927240.007135959
30:
31: $v
32: [,1][,2][,3][,4][,5][,6][,7][,8][,9][,10]
33: [1,] -0.01423809 -0.017708520.010464210.0440060554 -0.037080110.0039892020.02212364 -0.029657630.609656748 -0.789301225
34: [2,] -0.30655677 -0.388443160.215403020.5860837223 -0.20831346 -0.0713214620.09280202 -0.537055090.0589027910.127479773
35: [3,] -0.27500938 -0.28653235 -0.04046986 -0.00061330850.62767935 -0.424262650 -0.381871840.161645570.2605821260.163683441
36: [4,] -0.39289768 -0.371819670.102182290.0430729100 -0.048306600.258172491 -0.191458850.37788201 -0.530454225 -0.406528598
37: [5,] -0.32434239 -0.184162190.18854340 -0.2694300561 -0.380739240.2731287710.080034280.370397680.4915166200.384701079
38: [6,] -0.280658260.083021710.24277466 -0.6198550162 -0.27053693 -0.402153630 -0.20235690 -0.39991126 -0.144858619 -0.119997665
39: [7,] -0.265735340.09522360 -0.293469090.1374724777 -0.21528535 -0.6004591220.526533960.34671820 -0.089612967 -0.053976475
40: [8,] -0.443721900.30810327 -0.694627760.0748652314 -0.124393100.238340862 -0.32629727 -0.188526190.0596529910.047118889
41: [9,] -0.382719980.066496790.03894330 -0.25310956480.521739330.3073769120.59639765 -0.24228533 -0.036358521 -0.033403328
42: [10,] -0.279061740.692258880.526095470.32761708250.08203487 -0.008974789 -0.147186470.173743700.0089927240.007135959
11)、矩阵QR分解
1: > A=matrix(1:12,3,4)
2: > qr(A)
3: $qr
4: [,1][,2][,3][,4]
5: [1,] -3.7416574 -8.552360 -1.336306e+01 -1.817376e+01
6: [2,]0.53452251.9639613.927922e+005.891883e+00
7: [3,]0.80178370.9886933.443426e-16 -3.439089e-16
8:
9: $rank
10: [1] 2
11:
12: $qraux
13: [1] 1.267261e+00 1.149954e+00 3.443426e-16 3.439089e-16
14:
15: $pivot
16: [1] 1 2 3 4
17:
18: attr(,"class" )
19: [1] "qr"
(2)、找论文的好去处
1)、http://www.pdfgratis.com/ 一个非常强大的网站,能下载到各种论文;
2)、http://jeffhuang.com/best_paper_awards.html
(3)、编写latex公式的工具
【Cholesky分解】最初是在小桥流水的博客上发现的,地址如下:http://www.cnblogs.com/youwang/archive/2010/04/04/1704099.html ,对他的插件做了一点修改,增加的功能是:可以还原公式,例如:用该工具写公式,,选中该公式,然后单击插件,可以看到公式的latex代码,源码可以在这里下载到。
推荐阅读
- 个人日记|K8s中Pod生命周期和重启策略
- 学习分享|【C语言函数基础】
- C++|C++浇水装置问题
- 数据结构|C++技巧(用class类实现链表)
- C++|从零开始学C++之基本知识
- 步履拾级杂记|VS2019的各种使用问题及解决方法
- leetcode题解|leetcode#106. 从中序与后序遍历序列构造二叉树
- 动态规划|暴力递归经典问题
- 麦克算法|4指针与队列
- 遇见蓝桥遇见你|小唐开始刷蓝桥(一)2020年第十一届C/C++ B组第二场蓝桥杯省赛真题