利用Python发送|利用Python发送 10 万个 http 请求

目录

  • 1.队列+多线程
  • 2.线程池
  • 3.协程 + aiohttp
  • 4.grequests[1]
利用Python发送|利用Python发送 10 万个 http 请求
文章图片

前言:

假如有一个文件,里面有 10 万个 url,需要对每个 url 发送 http 请求,并打印请求结果的状态码,如何编写代码尽可能快的完成这些任务呢?
Python 并发编程有很多方法,多线程的标准库 threadingconcurrency,协程 asyncio,当然还有 grequests 这种异步库,每一个都可以实现上述需求,下面一一用代码实现一下,本文的代码可以直接运行,给你以后的并发编程作为参考:

1.队列+多线程
定义一个大小为 400 的队列,然后开启 200 个线程,每个线程都是不断的从队列中获取 url 并访问。
主线程读取文件中的 url 放入队列中,然后等待队列中所有的元素都被接收和处理完毕。
代码如下:
from threading import Threadimport sysfrom queue import Queueimport requestsconcurrent = 200def doWork():while True:url = q.get()status, url = getStatus(url)doSomethingWithResult(status, url)q.task_done()def getStatus(ourl):try:res = requests.get(ourl)return res.status_code, ourlexcept:return "error", ourldef doSomethingWithResult(status, url):print(status, url)q = Queue(concurrent * 2)for i in range(concurrent):t = Thread(target=doWork)t.daemon = Truet.start()try:for url in open("urllist.txt"):q.put(url.strip())q.join()except KeyboardInterrupt:sys.exit(1)

运行结果如下:
有没有 get 到新技能?

2.线程池
如果使用线程池,推荐使用更高级的 concurrent.futures 库:
import concurrent.futuresimport requestsout = []CONNECTIONS = 100TIMEOUT = 5urls = []with open("urllist.txt") as reader:for url in reader:urls.append(url.strip())def load_url(url, timeout):ans = requests.get(url, timeout=timeout)return ans.status_codewith concurrent.futures.ThreadPoolExecutor(max_workers=CONNECTIONS) as executor:future_to_url = (executor.submit(load_url, url, TIMEOUT) for url in urls)for future in concurrent.futures.as_completed(future_to_url):try:data = https://www.it610.com/article/future.result()except Exception as exc:data = str(type(exc))finally:out.append(data)print(data)


3.协程 + aiohttp
协程也是并发非常常用的工具了,
import asynciofrom aiohttp import ClientSession, ClientConnectorErrorasync def fetch_html(url: str, session: ClientSession, **kwargs) -> tuple:try:resp = await session.request(method="GET", url=url, **kwargs)except ClientConnectorError:return (url, 404)return (url, resp.status)async def make_requests(urls: set, **kwargs) -> None:async with ClientSession() as session:tasks = []for url in urls:tasks.append(fetch_html(url=url, session=session, **kwargs))results = await asyncio.gather(*tasks)for result in results:print(f'{result[1]} - {str(result[0])}')if __name__ == "__main__":import sysassert sys.version_info >= (3, 7), "Script requires Python 3.7+."with open("urllist.txt") as infile:urls = set(map(str.strip, infile))asyncio.run(make_requests(urls=urls))


4.grequests[1]
这是个第三方库,目前有 3.8K 个星,就是 Requests + Gevent[2],让异步 http 请求变得更加简单。Gevent 的本质还是协程。
使用前:
pip install grequests
使用起来那是相当的简单:
import grequestsurls = []with open("urllist.txt") as reader:for url in reader:urls.append(url.strip())rs = (grequests.get(u) for u in urls)for result in grequests.map(rs):print(result.status_code, result.url)

注意 :grequests.map(rs) 是并发执行的。
运行结果如下:
也可以加入异常处理:
>>> def exception_handler(request, exception):...print("Request failed")>>> reqs = [...grequests.get('http://httpbin.org/delay/1', timeout=0.001),...grequests.get('http://fakedomain/'),...grequests.get('http://httpbin.org/status/500')]>>> grequests.map(reqs, exception_handler=exception_handler)Request failedRequest failed[None, None, ]

最后的话:

今天分享了并发 http 请求的几种实现方式,有人说异步(协程)性能比多线程好,其实要分场景看的,没有一种方法适用所有的场景,笔者就曾做过一个实验,也是请求 url,当并发数量超过 500 时,协程明显变慢。所以,不能说哪个一定比哪个好,需要划分情况。
【利用Python发送|利用Python发送 10 万个 http 请求】到此这篇关于利用Python发送 10 万个 http 请求的文章就介绍到这了,更多相关利用Python发送 http 请求内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

    推荐阅读