常量、
在 TensorFlow 中,数据不是以整数,浮点数或者字符串形式存在的,而是被封装在一个叫做 tensor 的对象中。Tensor是张量的意思,张量包含了0到任意维度的量,其中,0维的叫做常数,1维的叫做向量,二维叫做矩阵,多维度的就直接叫张量量。
Tensorflow中对常量的初始化,不管是对数值、向量还是对矩阵的初始化,都是通过调用constant()函数实现的。因为constant()函数在Tensorflow中的使用非常频繁,经常被用于构建图模型中常量的定义,函数constant有五个参数,分别为value,name,dtype,shape和verify_shape。其中value为必选参数,其它均为可选参数。Value为常量的具体值,可以是一个数字,一维向量或是多维矩阵。Name是常量的名字,用于区别其它常量。Dtype是常量的类型,如:tf.float32。Shape是指常量的维度,我们可以自行定义常量的维度,verify_shape是验证shape是否正确,默认值为关闭状态(False)。也就是说当该参数true状态时,就会检测我们所写的参数shape是否与value的真实shape一致,若不一致就会报TypeError错误。
变量
Tensorflow还提供了一些常见常量的初始化,如:tf.zeros、tf.ones、tf.fill、tf.linspace、tf.range等,均可以快速初始化一些常量。此外,Tensorflow还可以生成一些随机的张量,方便快速初始化一些随机值。如:tf.random_normal()、tf.truncated_normal()、tf.random_uniform()、tf.random_shuffle()等。
变量variable()也是在Tensorflow中经常会被用到的函数。变量的作用是保存和更新参数。执行图模型时,一定要对变量进行初始化,经过初始化后的变量才能拿来使用。变量的使用包括创建、初始化、保存、加载等操作。
占位符
前面代码中出现了tf.constant(‘Hello World!’),这个tf.constant是用来定义常量的,其值是不变的,但是如果你需要用到一个变量怎么办呢?
这个时候就需要用到tf.placeholder() 和 feed_dict了。
x = tf.placeholder(tf.string)
with tf.Session() as sess:
output = sess.run(x, feed_dict={x: 'Hello World'})
tf.placeholder表示一个占位符,至于是什么类型,看自己定义了,这里定义的是tf.string类型,然后呢,在session开始run以前,也就死这个图开始计算以前,就使用feed_dict将对应的值传入x,也就是这个占位符。
同样的feed_dict可以设置多个tensor
x = tf.placeholder(tf.string)
y = tf.placeholder(tf.int32)
z = tf.placeholder(tf.float32)
with tf.Session() as sess:
output = sess.run(x, feed_dict={x: 'Test String', y: 123, z: 45.67})
但是需要注意的是,使用feed_dict设置tensor的时候,需要你给出的值类型与占位符定义的类型相同。
张量的阶、形状、数据类型 TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.
阶在TensorFlow系统中,张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序或度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.
t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句
t[i, j]
来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.阶 | 数学实例 | Python 例子 |
---|---|---|
0 | 纯量 (只有大小) | s = 483 |
1 | 向量(大小和方向) | v = [1.1, 2.2, 3.3] |
2 | 矩阵(数据表) | m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] |
3 | 3阶张量 (数据立体) | t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]] |
n | n阶 (自己想想看) | .... |
阶 | 形状 | 维数 | 实例 |
---|---|---|---|
0 | [ ] | 0-D | 一个 0维张量. 一个纯量. |
1 | [D0] | 1-D | 一个1维张量的形式[5]. |
2 | [D0, D1] | 2-D | 一个2维张量的形式[3, 4]. |
3 | [D0, D1, D2] | 3-D | 一个3维张量的形式 [1, 4, 3]. |
n | [D0, D1, ... Dn] | n-D | 一个n维张量的形式 [D0, D1, ... Dn]. |
TensorShape
class.数据类型 除了维度,Tensors有一个数据类型属性.你可以为一个张量指定下列数据类型中的任意一个类型:
数据类型 | Python 类型 | 描述 |
---|---|---|
DT_FLOAT |
tf.float32 |
32 位浮点数. |
DT_DOUBLE |
tf.float64 |
64 位浮点数. |
DT_INT64 |
tf.int64 |
64 位有符号整型. |
DT_INT32 |
tf.int32 |
32 位有符号整型. |
DT_INT16 |
tf.int16 |
16 位有符号整型. |
DT_INT8 |
tf.int8 |
8 位有符号整型. |
DT_UINT8 |
tf.uint8 |
8 位无符号整型. |
DT_STRING |
tf.string |
可变长度的字节数组.每一个张量元素都是一个字节数组. |
DT_BOOL |
tf.bool |
布尔型. |
DT_COMPLEX64 |
tf.complex64 |
由两个32位浮点数组成的复数:实数和虚数. |
DT_QINT32 |
tf.qint32 |
用于量化Ops的32位有符号整型. |
DT_QINT8 |
tf.qint8 |
用于量化Ops的8位有符号整型. |
DT_QUINT8 |
tf.quint8 |
用于量化Ops的8位无符号整型. |
我们的存储文件save.ckpt是一个二进制文件,Saver存储器提供了向该二进制文件保存变量和恢复变量的方法。保存变量的方法就是程序中的save()方法,保存的内容是从变量名到tensor值的映射关系。Saver提供了一个内置的计数器自动为checkpoint文件编号。这就支持训练模型在任意步骤多次保存。此外,还可以通过global_step参数自行对保存文件进行编号,例如:global_step=2,则保存变量的文件夹为model.ckpt-2。那如何才能恢复变量呢?首先,我们要知道一定要用和保存变量相同的Saver对象来恢复变量。其次,不需要事先对变量进行初始化。变量的获取是通过restore()方法,该方法有两个参数,分别是session和获取变量文件的位置。我们还可以通过latest_checkpoint()方法,获取到该目录下最近一次保存的模型。
推荐阅读
- Keras|将Pytorch模型迁移到android端(android studio)【未实现】
- Tensorflow|Tensorflow学习笔记----梯度下降
- Tensorflow【branch-官网代码实践-Eager/tf.data/Keras/Graph】_8.19
- nlp|Keras(十一)梯度带(GradientTape)的基本使用方法,与tf.keras结合使用
- tensorflow|tf1.x究竟到底如何如何使用Embedding?
- python|Keras TensorFlow 验证码识别(附数据集)
- AI|bert实现端到端继续预训练
- Tensorflow|cuda由7.0升级到8.0
- tensorflow|利用Tensorflow的队列多线程读取数据
- 深度学习|conda源,tensorflow2,pytorch安装