【kafka的JavaAPI操作】一、创建maven工程并添加jar包
创建maven工程并添加以下依赖jar包的坐标到pom.xml
org.apache.kafka
kafka-clients
1.0.0
org.apache.kafka
kafka-streams
1.0.0
org.apache.maven.plugins
maven-compiler-plugin
3.2
1.8
1.8
UTF-8
二、生产者代码
1、使用生产者,生产数据
/**
* 订单的生产者代码,
*/
public class OrderProducer {
public static void main(String[] args) throws InterruptedException {
/* 1、连接集群,通过配置文件的方式
* 2、发送数据-topic:order,value
*/
Properties props = new Properties();
props.put("bootstrap.servers", "node01:9092");
props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer kafkaProducer = new KafkaProducer
(props);
for (int i = 0;
i < 1000;
i++) {
// 发送数据 ,需要一个producerRecord对象,最少参数 String topic, V value kafkaProducer.send(new ProducerRecord("order", "订单信
息!"+i));
Thread.sleep(100);
}
}
}
2、kafka当中的数据分区
kafka生产者发送的消息,都是保存在broker当中,我们可以自定义分区规则,决定消息发送到哪个partition里面去进行保存
查看ProducerRecord这个类的源码,就可以看到kafka的各种不同分区策略
kafka当中支持以下四种数据的分区方式:
第一种分区策略,如果既没有指定分区号,也没有指定数据key,那么就会使用轮询的方式将数据均匀的发送到不同的分区里面去
//ProducerRecord producerRecord1 = new ProducerRecord<>("mypartition", "mymessage" + i);
//kafkaProducer.send(producerRecord1);
第二种分区策略 如果没有指定分区号,指定了数据key,通过key.hashCode % numPartitions来计算数据究竟会保存在哪一个分区里面
//注意:如果数据key,没有变化 key.hashCode % numPartitions = 固定值 所有的数据都会写入到某一个分区里面去
//ProducerRecord producerRecord2 = new ProducerRecord<>("mypartition", "mykey", "mymessage" + i);
//kafkaProducer.send(producerRecord2);
第三种分区策略:如果指定了分区号,那么就会将数据直接写入到对应的分区里面去
//ProducerRecord producerRecord3 = new ProducerRecord<>("mypartition", 0, "mykey", "mymessage" + i);
// kafkaProducer.send(producerRecord3);
第四种分区策略:自定义分区策略。如果不自定义分区规则,那么会将数据使用轮询的方式均匀的发送到各个分区里面去
kafkaProducer.send(new ProducerRecord("mypartition","mymessage"+i));
自定义分区策略
public class KafkaCustomPartitioner implements Partitioner {
@Override
public void configure(Map configs) {
}
@Override
public int partition(String topic, Object arg1, byte[] keyBytes, Object arg3, byte[] arg4, Cluster cluster) {
List partitions = cluster.partitionsForTopic(topic);
int partitionNum = partitions.size();
Random random = new Random();
int partition = random.nextInt(partitionNum);
return partition;
}
@Override
public void close() {
}
}
主代码中添加配置
@Test
public void kafkaProducer() throws Exception {
//1、准备配置文件
Properties props = new Properties();
props.put("bootstrap.servers", "node01:9092,node02:9092,node03:9092");
props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("partitioner.class", "cn.itcast.kafka.partitioner.KafkaCustomPartitioner");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
//2、创建KafkaProducer
KafkaProducer kafkaProducer = new KafkaProducer(props);
for (int i=0;
i<100;
i++){
//3、发送数据
kafkaProducer.send(new ProducerRecord("testpart","0","value"+i));
}
kafkaProducer.close();
}
三、消费者代码
消费必要条件
消费者要从kafka Cluster进行消费数据,必要条件有以下四个
1、地址 bootstrap.servers=node01:9092
2、序列化 key.serializer=org.apache.kafka.common.serialization.StringSerializer value.serializer=org.apache.kafka.common.serialization.StringSerializer
3、主题(topic) 需要制定具体的某个topic(order)即可。 4、消费者组 group.id=test 1、 自动提交offset
消费完成之后,自动提交offset
/**
* 消费订单数据--- javaben.tojson
*/
public class OrderConsumer {
public static void main(String[] args) {
// 1\连接集群
Properties props = new Properties();
props.put("bootstrap.servers", "hadoop-01:9092");
props.put("group.id", "test");
//以下两行代码 ---消费者自动提交offset值
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms","1000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer kafkaConsumer = new KafkaConsumer
(props);
//2、发送数据 发送数据需要,订阅下要消费的topic。order kafkaConsumer.subscribe(Arrays.asList("order"));
while (true) {
ConsumerRecords consumerRecords = kafkaConsumer.poll(100);
// jdk queue offer插入、poll获取元素。 blockingqueue put插入原生, take获取元素
for (ConsumerRecord record : consumerRecords) { System.out.println("消费的数据为:" + record.value());
}
}
}
}
2、手动提交offset
如果Consumer在获取数据后,需要加入处理,数据完毕后才确认offset,需要程序来控制offset的确认? 关闭自动提交确认选项
props.put("enable.auto.commit","false");
手动提交o?set值
kafkaConsumer.commitSync();
完整代码如下所示:
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test");
//关闭自动提交确认选项
props.put("enable.auto.commit", "false");
props.put("key.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList("test"));
final int minBatchSize = 200;
List buffer = new ArrayList<>();
while (true) {
ConsumerRecords records = consumer.poll(100);
for (ConsumerRecord record : records) {
buffer.add(record);
}
if (buffer.size() >= minBatchSize) {
insertIntoDb(buffer);
// 手动提交offset值
consumer.commitSync();
buffer.clear();
}
}
3、消费完每个分区之后手动提交offset
上面的示例使用commitSync将所有已接收的记录标记为已提交。大数据培训在某些情况下,您可能希望通过明确指定偏移量 来更好地控制已提交的记录。 在下面的示例中,在完成处理每个分区中的记录后提交偏移量。
try {
while(running) {
ConsumerRecords records = consumer.poll(Long.MAX_VALUE);
for (TopicPartition partition : records.partitions()) {
List partitionRecords = records.records(partition);
for (ConsumerRecord record : partitionRecords) { System.out.println(record.offset() + ": " + record.value());
}
long lastOffset = partitionRecords.get(partitionRecords.size() -1).offset();
consumer.commitSync(Collections.singletonMap(partition, new OffsetAndMetadata(lastOffset + 1)));
}
}
}
finally { consumer.close();
注意事项:
提交的偏移量应始终是应用程序将读取的下一条消息的偏移量。 因此,在调用commitSync(偏移量)时,应该 在最后处理的消息的偏移量中添加一个
4、指定分区数据进行消费
1、如果进程正在维护与该分区关联的某种本地状态(如本地磁盘上的键值存储),那么它应该只获取它在磁盘上 维护的分区的记录。
2、如果进程本身具有高可用性,并且如果失败则将重新启动(可能使用YARN,Mesos或AWS工具等集群管理框 架,或作为流处理框架的一部分)。 在这种情况下,Kafka不需要检测故障并重新分配分区,因为消耗过程将在另 一台机器上重新启动。
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("key.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer consumer = new KafkaConsumer<>(props);
//consumer.subscribe(Arrays.asList("foo","bar"));
//手动指定消费指定分区的数据---start
String topic = "foo";
TopicPartition partition0 = new TopicPartition(topic, 0);
TopicPartition partition1 = new TopicPartition(topic, 1);
consumer.assign(Arrays.asList(partition0,partition1));
//手动指定消费指定分区的数据---end
while (true) {
ConsumerRecords records = consumer.poll(100);
for (ConsumerRecord record : records)
System.out.printf("offset = %d, key = %s, value = https://www.it610.com/article/%s%n", record.offset(), record.key(), record.value());
}
注意事项:
1、要使用此模式,您只需使用要使用的分区的完整列表调用assign(Collection),而不是使用subscribe订阅 主题。
2、主题与分区订阅只能二选一
5、重复消费与数据丢失
已经消费的数据对于kafka来说,会将消费组里面的o?set值进行修改,那什么时候进行修改了?是在数据消费 完成之后,比如在控制台打印完后自动提交;
提交过程:是通过kafka将o?set进行移动到下个message所处的o?set的位置。
拿到数据后,存储到hbase中或者mysql中,如果hbase或者mysql在这个时候连接不上,就会抛出异常,如果在处理数据的时候已经进行了提交,那么kafka伤的o?set值已经进行了修改了,但是hbase或者mysql中没有数据,这个时候就会出现数据丢失。
什么时候提交o?set值?在Consumer将数据处理完成之后,再来进行o?set的修改提交。默认情况下o?set是 自动提交,需要修改为手动提交o?set值。
如果在处理代码中正常处理了,但是在提交o?set请求的时候,没有连接到kafka或者出现了故障,那么该次修 改o?set的请求是失败的,那么下次在进行读取同一个分区中的数据时,会从已经处理掉的o?set值再进行处理一 次,那么在hbase中或者mysql中就会产生两条一样的数据,也就是数据重复
6、consumer消费者消费数据流程
流程描述
Consumer连接指定的Topic partition所在leader broker,采用pull方式从kafkalogs中获取消息。对于不同的消费模式,会将offset保存在不同的地方
官网关于high level API 以及low level API的简介
http://kafka.apache.org/0100/...
高阶API(High Level API)
kafka消费者高阶API简单;隐藏Consumer与Broker细节;相关信息保存在zookeeper中。
/* create a connection to the cluster */
ConsumerConnector connector = Consumer.create(consumerConfig);
interface ConsumerConnector {
/**
This method is used to get a list of KafkaStreams, which are iterators over
MessageAndMetadata objects from which you can obtain messages and their
associated metadata (currently only topic).
Input: a map of
Output: a map of
*/
public Map> createMessageStreams(Map topicCountMap);
/**
You can also obtain a list of KafkaStreams, that iterate over messages
from topics that match a TopicFilter. (A TopicFilter encapsulates a
whitelist or a blacklist which is a standard Java regex.)
*/
public List createMessageStreamsByFilter( TopicFilter topicFilter, int numStreams);
/* Commit the offsets of all messages consumed so far. */ public commitOffsets()
/* Shut down the connector */ public shutdown()
}
说明:大部分的操作都已经封装好了,比如:当前消费到哪个位置下了,但是不够灵活(工作过程推荐使用)
低级API(Low Level API)
kafka消费者低级API非常灵活;需要自己负责维护连接Controller Broker。保存offset,Consumer Partition对应 关系。
class SimpleConsumer {
/* Send fetch request to a broker and get back a set of messages. */
public ByteBufferMessageSet fetch(FetchRequest request);
/* Send a list of fetch requests to a broker and get back a response set. */ public MultiFetchResponse multifetch(List fetches);
/**
Get a list of valid offsets (up to maxSize) before the given time.
The result is a list of offsets, in descending order.
@param time: time in millisecs,
if set to OffsetRequest$.MODULE$.LATEST_TIME(), get from the latest
offset available. if set to OffsetRequest$.MODULE$.EARLIEST_TIME(), get from the earliest
available. public long[] getOffsetsBefore(String topic, int partition, long time, int maxNumOffsets);
* offset
*/
说明:没有进行包装,所有的操作有用户决定,如自己的保存某一个分区下的记录,你当前消费到哪个位置。
四、kafka Streams API开发
需求:使用StreamAPI获取test这个topic当中的数据,然后将数据全部转为大写,写入到test2这个topic当中去
第一步:创建一个topic
node01服务器使用以下命令来常见一个topic 名称为test2
cd /export/servers/kafka_2.11-1.0.0/
bin/kafka-topics.sh --create--partitions 3 --replication-factor 2 --topic test2 --zookeeper node01:2181,node02:2181,node03:2181
第二步:开发StreamAPI
public class StreamAPI {
public static void main(String[] args) {
Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "wordcount-application");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "node01:9092");
props.put(StreamsConfig.KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
props.put(StreamsConfig.VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
KStreamBuilder builder = new KStreamBuilder();
builder.stream("test").mapValues(line -> line.toString().toUpperCase()).to("test2");
KafkaStreams streams = new KafkaStreams(builder, props);
streams.start();
}
}
第三步:生产数据
node01执行以下命令,向test这个topic当中生产数据
cd /export/servers/kafka_2.11-1.0.0
bin/kafka-console-producer.sh --broker-list node01:9092,node02:9092,node03:9092 --topic test
第四步:消费数据
node02执行一下命令消费test2这个topic当中的数据
cd /export/servers/kafka_2.11-1.0.0
bin/kafka-console-consumer.sh --from-beginning --topic test2 --zookeeper node01:2181,node02:2181,node03:2181
推荐阅读
- 关于kafka数据丢失场景的一次激烈讨论....
- Kafka的生产集群部署
- 聊聊 Kafka(如何避免消费组的 Rebalance)
- 深入解析Kafka的offset管理
- SpringBoot|spring boot中使用kafka详解(踩完坑又爬了出来)
- java|Log4j2异步将log发送到kafka (kafka及其依赖环境的docker配置和使用)
- kafka的优缺点都有那些
- kafka|Kafka的数据是如何存储的
- Kafka|Kafka VS RocketMQ VS RabbitMQ
- #|Zero-Copy