方案背景
【Kafka的生产集群部署】假设每天集群需要承载10亿数据。一天24小时,晚上12点到凌晨8点几乎没多少数据。
使用二八法则估计,也就是80%的数据(8亿)会在16个小时涌入,而且8亿的80%的数据(6.4亿)会在这16个小时的20%时间(3小时)涌入。
QPS计算公式:640000000 ÷ (3x60x60) = 60000,也就是说高峰期的时候Kafka集群要扛住每秒6万的并发。
磁盘空间计算,每天10亿数据,每条50kb,也就是46T的数据。保存2个副本(在上一篇中也提到过其实两个副本会比较好,因为follower需要去leader那里同步数据,大数据培训同步数据的过程需要耗费网络,而且需要磁盘空间,但是这个需要根据实际情况考虑),46 2 = 92T,保留最近3天的数据。故需要 92 3 = 276T。
QPS方面
部署Kafka,Hadoop,MySQL……等核心分布式系统,一般建议直接采用物理机,抛弃使用一些低配置的虚拟机的想法。高并发这个东西,不可能是说,你需要支撑6万QPS,你的集群就刚好把这6万并发卡的死死的。加入某一天出一些活动让数据量疯狂上涨,那整个集群就会垮掉。
但是,假如说你只要支撑6w QPS,单台物理机本身就能扛住4~5万的并发。所以这时2台物理机绝对绝对够了。但是这里有一个问题,我们通常是建议,公司预算充足,尽量是让高峰QPS控制在集群能承载的总QPS的30%左右(也就是集群的处理能力是高峰期的3~4倍这个样子),所以我们搭建的kafka集群能承载的总QPS为20万~30万才是安全的。所以大体上来说,需要5~7台物理机来部署,基本上就很安全了,每台物理机要求吞吐量在每秒4~5万条数据就可以了,物理机的配置和性能也不需要特别高。
磁盘方面
磁盘数量
需要5台物理机的情况,需要存储276T的数据,平均下来差不多一台56T的数据。这个具体看磁盘数和盘的大小。
SAS还是SSD
现在我们需要考虑一个问题:是需要SSD固态硬盘,还是普通机械硬盘?
SSD就是固态硬盘,比机械硬盘要快,那么到底是快在哪里呢?其实SSD的快主要是快在磁盘随机读写,就要对磁盘上的随机位置来读写的时候,SSD比机械硬盘要快。比如说MySQL这种就应该使用SSD了(MySQL需要随机读写)。北京大数据培训比如说我们在规划和部署线上系统的MySQL集群的时候,一般来说必须用SSD,性能可以提高很多,这样MySQL可以承载的并发请求量也会高很多,而且SQL语句执行的性能也会提高很多。
因为写磁盘的时候Kafka是顺序写的。机械硬盘顺序写的性能机会跟内存读写的性能是差不多的,所以对于Kafka集群来说其实使用机械硬盘就可以了。如果是需要自己创业或者是在公司成本不足的情况下,经费是能够缩减就尽量缩减的。
内存角度
JVM非常怕出现full gc的情况。Kafka自身的JVM是用不了过多堆内存的,因为Kafka设计就是规避掉用JVM对象来保存数据,避免频繁full gc导致的问题,所以一般Kafka自身的JVM堆内存,分配个10G左右就够了,剩下的内存全部留给OS cache。
那服务器需要多少内存呢。我们估算一下,大概有100个topic,所以要保证有100个topic的leader partition的数据在操作系统的内存里。100个topic,一个topic有5个partition。那么总共会有500个partition。每个partition的大小是1G(在上一篇中的日志分段存储中规定了.log文件不能超过1个G),我们有2个副本,也就是说要把100个topic的leader partition数据都驻留在内存里需要1000G的内存。
我们现在有5台服务器,所以平均下来每天服务器需要200G的内存,但是其实partition的数据我们没必要所有的都要驻留在内存里面,只需要25%的数据在内存就行,200G * 0.25 = 50G就可以了(因为在集群中的生产者和消费者几乎也算是实时的,基本不会出现消息积压太多的情况)。所以一共需要60G(附带上刚刚的10G Kafka服务)的内存,故我们可以挑选64G内存的服务器也行,大不了partition的数据再少一点在内存,当然如果能够提供128G内存那就更好。
CPU core
CPU规划,主要是看你的这个进程里会有多少个线程,线程主要是依托多核CPU来执行的,如果你的线程特别多,但是CPU核很少,就会导致你的CPU负载很高,会导致整体工作线程执行的效率不太高,上一篇的Kafka的网络设计中讲过Kafka的Broker的模型。acceptor线程负责去接入客户端的连接请求,但是他接入了之后其实就会把连接分配给多个processor,默认是3个,但是一般生产环境建议大家还是多加几个,整体可以提升kafka的吞吐量比如说你可以增加到6个,或者是9个。另外就是负责处理请求的线程,是一个线程池,默认是8个线程,在生产集群里,建议大家可以把这块的线程数量稍微多加个2倍~3倍,其实都正常,比如说搞个16个工作线程,24个工作线程。
后台会有很多的其他的一些线程,比如说定期清理7天前数据的线程,Controller负责感知和管控整个集群的线程,副本同步拉取数据的线程,这样算下来每个broker起码会有上百个线程。根据经验4个CPU core,一般来说几十个线程,在高峰期CPU几乎都快打满了。8个CPU core,也就能够比较宽裕的支撑几十个线程繁忙的工作。所以Kafka的服务器一般是建议16核,基本上可以hold住一两百线程的工作。当然如果可以给到32 CPU core那就最好不过了。
网卡
现在的网基本就是千兆网卡(1GB / s),还有万兆网卡(10GB / s)。kafka集群之间,broker和broker之间是会做数据同步的,因为leader要同步数据到follower上去,他们是在不同的broker机器上的,broker机器之间会进行频繁的数据同步,传输大量的数据。那每秒两台broker机器之间大概会传输多大的数据量?
高峰期每秒大概会涌入6万条数据,约每天处理10000个请求,每个请求50kb,故每秒约进来488M数据,我们还有副本同步数据,故高峰期的时候需要488M * 2 = 976M/s的网络带宽,所以在高峰期的时候,使用千兆带宽,网络还是非常有压力的。
推荐阅读
- 关于kafka数据丢失场景的一次激烈讨论....
- 聊聊 Kafka(如何避免消费组的 Rebalance)
- 深入解析Kafka的offset管理
- SpringBoot|spring boot中使用kafka详解(踩完坑又爬了出来)
- java|Log4j2异步将log发送到kafka (kafka及其依赖环境的docker配置和使用)
- kafka的优缺点都有那些
- kafka|Kafka的数据是如何存储的
- Kafka|Kafka VS RocketMQ VS RabbitMQ
- #|Zero-Copy