01.function [Q,R]=qrhs(A)02.% 基于Householder变换,将方阵A分解为A=QR,其中Q为正交矩阵,R为上三角阵03.%04.% 参数说明05.% A:需要进行QR分解的方阵06.% Q:分解得到的正交矩阵07.% R:分解得到的上三角阵08.%09.% 实例说明10.% A=[-12 3 3;
3 1 -2;
3 -2 7];
11.% [Q,R]=qr(A) % 调用MATLAB自带的QR分解函数进行验证12.% [q,r]=qrhs(A) % 调用本函数进行QR分解13.% q*r-A % 验证 A=QR14.% q'*q % 验证q的正交性15.% norm(q) % 验证q的标准化,即二范数等于116.% 17.% 线性代数基础知识18.% 1.B=P*A*inv(P),称A与B相似,相似矩阵具有相同的特征值19.% 2.Q*Q'=I,称Q为正交矩阵,正交矩阵的乘积仍为正交矩阵20.% 21.% 注意:我们也可以基于Givens变换,对方阵A进行QR分解,但是相对繁琐些,参见http://www.matlabsky.com/thread-4850-1-1.html22.%23.% by dynamic of Matlab技术论坛24.% see also http://www.matlabsky.com25.% contact me matlabsky@gmail.com26.% 2010-01-17 22:49:5127.%28.n=size(A,1);
29.R=A;
30.Q=eye(n);
31.for i=1:n-132.x=R(i:n,i);
33.y=[1;
zeros(n-i,1)];
34.Ht=householder(x,y);
35.H=blkdiag(eye(i-1),Ht);
36.Q=Q*H;
37.R=H*R;
38.end
function [H,rho]=householder(x,y)
% 求解正交对称的Householder矩阵H,使Hx=rho*y,其中rho=-sign(x(1))*||x||/||y||
%
% 参数说明
% x:列向量
% y:列向量,x和y必须具有相同的维数
%
% 实例说明
% x=[3 5 6 8]';
% y=[1 0 0 0]';
% [H,rho]=householder(x,y);
% H*x-rho*y % 验证Hx=rho*y
% H'*H % 验证正交
%
% 关于HouseHolder变换
% 1.H=I-2vv',其中||v||=1,我们称H为反射(HouseHolder)矩阵,易证H对称且正交
% 2.如果||x||=||y||,那么存在HouseHolder矩阵H=I-2vv,其中v=±(x-y)/||x-y||,使Hx=y
% 3.如果||x||≠||y||,那么存在HouseHolder矩阵H,使Hx=rho*y,其中rho=-sign(x(1))*||x||/||y||
% 4.Householder矩阵,常用于将一个矩阵A通过正交变换对角阵
%
x=x(:);
y=y(:);
if length(x)~=length(y)
error('The Column Vectors X and Y Must Have The Same Length!');
end
rho=-sign(x(1))*norm(x)/norm(y);
y=rho*y;
v=(x-y)/norm(x-y);
I=eye(length(x));
H=I-2*v*v';
文章出处: http://blog.sina.com.cn/s/blog_62b52e290100ydgn.html
??
推荐阅读
- 最优化问题|改进交叉算子的自适应人工蜂群黏菌算法
- matlab|嵌入均衡池的黏菌优化算法
- 最优化问题|加入领导者的黏菌优化算法
- MATLAB图形界面|基于Matlab的汽车出入库计时计费系统
- Matlab旅程|MATLAB的结构化程序设计
- matlab 内存管理 清理内存
- matlab中使用colormap没有效果
- Matlab|圆柱绕流
- MATLAB|Splart-Allmaras湍流模型及MATLAB编程~
- regionprops统计被标记的区域的面积分布,显示区域总数。