基于遗传算法优化的BP神经网络的 非线性函数拟合

遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法 。 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。


一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:
种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。
个体:组成种群的单个生物。
基因 ( Gene ) :一个遗传因子。
染色体 ( Chromosome ) :包含一组的基因。
【基于遗传算法优化的BP神经网络的 非线性函数拟合】生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。
遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变 ( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。


二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。
举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取) ;首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

编码:需要将问题的解编码成字符串的形式才能使用遗传算法。最简单的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。将0-1字符串作为0-1背包问题的解就属于二进制编码。

遗传算法有3个最基本的操作:选择,交叉,变异。

选择:选择一些染色体来产生下一代。一种常用的选择策略是 “比例选择”,也就是个体被选中的概率与其适应度函数值成正比。假设群体的个体总数是M,那么那么一个体Xi被选中的概率为f(Xi)/( f(X1) + f(X2) + …….. + f(Xn) ) 。比例选择实现算法就是所谓的“轮盘赌算法”( Roulette Wheel Selection ) ,轮盘赌算法的一个简单的实现如下:

基于遗传算法优化的BP神经网络的 非线性函数拟合
文章图片
基于遗传算法优化的BP神经网络的 非线性函数拟合
文章图片
轮盘赌算法 /*
* 按设定的概率,随机选中一个个体
* P[i]表示第i个个体被选中的概率
*/
int RWS()
{
m =0;
r =Random(0,1); //r为0至1的随机数
for(i=1; i<=N; i++)
{
/* 产生的随机数在m~m+P[i]间则认为选中了i
* 因此i被选中的概率是P[i]
*/
m = m + P[i];
if(r<=m) return i;
}
} 基于遗传算法优化的BP神经网络的 非线性函数拟合
文章图片

交叉(Crossover):2条染色体交换部分基因,来构造下一代的2条新的染色体。例如:
交叉前:
00000|011100000000|10000
11100|000001111110|00101
交叉后:
00000|000001111110|10000
11100|011100000000|00101
染色体交叉是以一定的概率发生的,这个概率记为Pc 。

变异(Mutation):在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。变异发生的概率记为Pm 。例如:
变异前:
000001110000000010000
变异后:
000001110000100010000

适应度函数 ( Fitness Function ):用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。



遗传算法优化的BP神经网络算法流程:
主要用遗传算法求得BP神经网络的初始权值和偏置,网络经训练后预测函数输出;
遗传算法优化BP神经网络是用遗传算法优化BP神经网络的初始权值和阈值,使优化后的bP神经网络更好的预测函数输出,遗传算法主要包含下面的操作:
1、种群初始化
个体编码方法为实数编码,每个个体均为一个实数串,由输入层与隐含层之间的权重偏置和隐含层和输出层之间的权重和额偏置,构成,
2、适应度计算
根据得到BP神经网络的初始权重和阈值,用训练数据训练BP神经网络后的预测系统输出,吧预测输出和期望输出之间的误差绝对值作为个体适应度
3、选择操作
遗传算法选择操作有轮盘读法,锦标塞阀等多种方法,选择算法根据个体的适应度内进行选择,适应度越小越好,
4、交差操作、
由于个体采用实数编码,所交叉操作采用实数交叉法,第K和第j个染色体中第m和第n个进行交叉
5、变异操作
选取个体i中第j个位置进行变异
基于遗传算法优化的BP神经网络的 非线性函数拟合
文章图片


编程的方法:

%读取数据 load data input output %% %节点个数 inputnum=2; hiddennum=5; outputnum=1; %训练数据和预测数据 input_train=input(1:1900,:)'; input_test=input(1901:2000,:)'; output_train=output(1:1900)'; output_test=output(1901:2000)'; %选连样本输入输出数据归一化 [inputn,inputps]=mapminmax(input_train); [outputn,outputps]=mapminmax(output_train); %构建网络 net=newff(inputn,outputn,hiddennum); %% 遗传算法参数初始化 maxgen=20; %进化代数,即迭代次数 sizepop=10; %种群规模 pcross=[0.2]; %交叉概率选择,0和1之间 pmutation=[0.1]; %变异概率选择,0和1之间%节点总数 numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum; lenchrom=ones(1,numsum); bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; %数据范围%------------------------------------------------------种群初始化-------------------------------------------------------- individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体 avgfitness=[]; %每一代种群的平均适应度 bestfitness=[]; %每一代种群的最佳适应度 bestchrom=[]; %适应度最好的染色体 %初始化种群 for i=1:sizepop %随机产生一个种群 individuals.chrom(i,:)=Code(lenchrom,bound); %编码(binary和grey的编码结果为一个实数,float的编码结果为一个实数向量) x=individuals.chrom(i,:); %计算适应度 individuals.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn); %染色体的适应度 end FitRecord=[]; %找最好的染色体 [bestfitness bestindex]=min(individuals.fitness); bestchrom=individuals.chrom(bestindex,:); %最好的染色体 avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度 % 记录每一代进化中最好的适应度和平均适应度 trace=[avgfitness bestfitness]; %% 迭代求解最佳初始阀值和权值 % 进化开始 for i=1:maxgen i % 选择 individuals=Select(individuals,sizepop); avgfitness=sum(individuals.fitness)/sizepop; %交叉 individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound); % 变异 individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,i,maxgen,bound); % 计算适应度 for j=1:sizepop x=individuals.chrom(j,:); %解码 individuals.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn); end%找到最小和最大适应度的染色体及它们在种群中的位置 [newbestfitness,newbestindex]=min(individuals.fitness); [worestfitness,worestindex]=max(individuals.fitness); % 代替上一次进化中最好的染色体 if bestfitness>newbestfitness bestfitness=newbestfitness; bestchrom=individuals.chrom(newbestindex,:); end individuals.chrom(worestindex,:)=bestchrom; individuals.fitness(worestindex)=bestfitness; avgfitness=sum(individuals.fitness)/sizepop; trace=[trace; avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度 FitRecord=[FitRecord; individuals.fitness]; end%% 遗传算法结果分析 figure(1) [r c]=size(trace); plot([1:r]',trace(:,2),'b--'); title(['适应度曲线' '终止代数=' num2str(maxgen)]); xlabel('进化代数'); ylabel('适应度'); legend('平均适应度','最佳适应度'); disp('适应度变量');


把最优初始阀值权值赋予网络预测


%% 把最优初始阀值权值赋予网络预测 % %用遗传算法优化的BP网络进行值预测 x=bestchrom; w1=x(1:inputnum*hiddennum); B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum); w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum); B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum); net.iw{1,1}=reshape(w1,hiddennum,inputnum); net.lw{2,1}=reshape(w2,outputnum,hiddennum); net.b{1}=reshape(B1,hiddennum,1); net.b{2}=B2; %% BP网络训练 %网络进化参数 net.trainParam.epochs=100; net.trainParam.lr=0.1; %net.trainParam.goal=0.00001; %网络训练 [net,per2]=train(net,inputn,outputn); %% BP网络预测 %数据归一化 inputn_test=mapminmax('apply',input_test,inputps); an=sim(net,inputn_test); test_simu=mapminmax('reverse',an,outputps); error=test_simu-output_test;








    推荐阅读