纠结火锅去哪吃,用Python可视化做个数据呈现决定吧(附学习资源)
# 前言
大家好,今天给大家讲一讲Python的综合实战演练内容——以大众都非常喜爱的火锅为例,如何用我们掌握的Python语言,去获取全国不同城市火锅店数量情况,并将这些数据进行可视化展示呢?
接下来我将带大家实现这一操作,以某度地图数据为基础,通过Python技术知识去获取数据并进行可视化。呈现出以更加直观的方式去浏览全国不同省份、不同城市的火锅店分布情况。与此同时,文末我将给大家整理出数据可视化所需的资料,分享给大家。
1.网页分析
首先先看一下数据源,在某度地图里面按照下方操作,就可以请求到全国的火锅店情况(从下图来看没有显示出来,但是通过Network,可以看到数据)
文章图片
在network中,找到下面这个数据包
文章图片
打开之后可以看到json数据
文章图片
2.获取数据
对网页分析好之后,接下来可以借助Python技术进行获取数据,并保存到excel中。
导入相关库
import json
import requests
import openpyxl
请求数据
下面开始编写请求数据代码(请求时记得带上headers)
###请求头headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0;
Win64;
x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36",'Referer':'https://map.baidu.com/@12949550.923158279,3712445.9716704674,6.28z',"Cookie":";
"你的cookie",}
##请求链接url = "https://map.baidu.com/?newmap=1&reqflag=pcmap&biz=1&from=webmap&da_par=direct&pcevaname=pc4.1&qt=s&da_src=https://www.it610.com/article/searchBox.button&wd=%E7%81%AB%E9%94%85%E5%BA%97&c=1&src=0&wd2=&pn=0&sug=0&l=6&b=(10637065.476146251,2368134.592189369;
12772445.910805061,5056757.351151566)&from=webmap&biz_forward={%22scaler%22:1,%22styles%22:%22pl%22}&sug_forward=&auth=NTSwAZUMzIaTTdWD4WAv0731cWF3MQEauxLxREHzERRtykiOxAXXw1GgvPUDZYOYIZuVt1cv3uVtGccZcuVtPWv3GuztQZ3wWvUvhgMZSguxzBEHLNRTVtcEWe1GD8zv7ucvY1SGpuxVthgW1aDeuxtf0wd0vyMySFIAFM7ueh33uTtAffbDF&seckey=c6d9c7e05d7e627c56ed46fab5d7c5c792064779599d5e12b955a6f18a1204375d1588206c94d22e4bdd1ade0ad06e78c21917e24c6223b96bc51b75ca38651a1b203a0609f126163c5e82fd0549a068e537303424837ab798acfc9088e5d76a66451c20ebd9599b41c9b4f1371850d20fa442ad464712f54c912422f4fa20b3052f8bb810f30d41c7c0e55af68f9d9d973537f03d0aa0a1d1617d78cae29b49c64c2d2dc3f44cf0f8799234b124a7a2dec18bfa011e097e31a508eae37b8603f97df8f935f04b3652f190eac52d04816f302a582c53971e515ff2e0e2b4cc30446e0bee48d51c4be8b6fe4185589ed9&device_ratio=1&tn=B_NORMAL_MAP&nn=0&u_loc=12677548,2604239&ie=utf-8&t=1618452491622"
###响应数据response = requests.get(url,headers=headers).json()
这里的cookie可以在浏览器network中复制即可。
文章图片
通过返回的json数据可知道,我们的目标数据在more\_city中,里面是列表数据是省份(provice是省份名称,num是火锅店数量),紧接着每一个省份里都有city(列表),里面是对应着省份的城市(name是城市名称,num是对应城市火锅店数量)
response = response['more_city']
for i in response:
city = i['city']
print(i['province'])
print(i['num'])
for j in city:
print(j['name'])
print(j['num'])
文章图片
保存到excel
省份和城市分别保存到两个不同的excel中
outwb_p = openpyxl.Workbook()
outws_p = outwb_p.create_sheet(index=0)
outws_p.cell(row=1, column=1, value="https://www.it610.com/article/省份")
outws_p.cell(row=1, column=2, value="https://www.it610.com/article/数量")outwb_c = openpyxl.Workbook()
outws_c = outwb_c.create_sheet(index=0)
outws_c.cell(row=1, column=1, value="https://www.it610.com/article/城市")
outws_c.cell(row=1, column=2, value="https://www.it610.com/article/数量")##################
###在循环中写入数据
##################### 保存全国省份火锅数量-李运辰”
outwb_p.save("全国省份火锅数量-李运辰.xls")# 保存
### 保存全国城市火锅数量-李运辰”
outwb_c.save("全国城市火锅数量-李运辰.xls")# 保存
文章图片
文章图片
3.数据可视化 1.全国火锅店数量分布
datafile = u'全国省份火锅数量-李运辰.xls'
data = https://www.it610.com/article/pd.read_excel(datafile)
attr = data['省份'].tolist()
value = https://www.it610.com/article/data['数量'].tolist()
name = []
for i in attr:
if "省" in i:
name.append(i.replace("省",""))
else:
name.append(i)
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.faker import Faker
c = (
Map()
.add("数量", [list(z) for z in zip(name, value)], "china")
.set_global_opts(title_opts=opts.TitleOpts(title="全国火锅店数量分布情况"))
.render("全国火锅店数量分布情况.html")
)
文章图片
还可以这样画
datafile = u'全国省份火锅数量-李运辰.xls'
df = pd.read_excel(datafile)
province_distribution = df[['省份', '数量']].values.tolist()
geo = Geo()
geo.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
geo.add_schema(maptype="china")
geo.set_global_opts(visualmap_opts=opts.VisualMapOpts(max_=110000))
# 加入数据
geo.add('全国火锅店数量分布情况图2', province_distribution, type_=ChartType.EFFECT_SCATTER)
geo.render("全国火锅店数量分布情况图2.html")
文章图片
2.四川火锅店数量分布
为了绘制城市的分布图,选择了四川省为例进行绘制(如果要绘制全国的所有城市,那样出来的图密密麻麻,不美观)
datafile = u'全国城市火锅数量-李运辰.xls'
data = https://www.it610.com/article/pd.read_excel(datafile)
city = data['城市'].tolist()
values2 = data['数量'].tolist()###四川
name = []
value = https://www.it610.com/article/[]
flag = 0
for i in range(0,len(city)):
if city[i] =="绵阳市":
flag = 1
if flag:
name.append(city[i])
value.append(int(values2[i]))if city[i] =="甘孜藏族自治州":
name.append(city[i])
value.append(int(values2[i]))
break
c = (
Map()
.add("四川火锅店数量分布", [list(z) for z in zip(name, value)], "四川")
.set_global_opts(
title_opts=opts.TitleOpts(title="四川火锅店数量分布"), visualmap_opts=opts.VisualMapOpts()
)
.render("四川火锅店数量分布.html")
)
文章图片
写在最后(附实用学习资料) 本篇文章的内容旨对可视化实战操作做一个简单的举例分析,没有做过多的深入讨论。撰写本文的初衷在于抛砖引玉,要想做到真正的融会贯通,毫无疑问需要更深层次的学习,下面我给大家整理了一些Python可视化实战练习的参考学习资料与视频(这里只做简单展示),以便于大家学习与更好发挥,需要的朋友可以私信我领取
文章图片
文章图片
【纠结火锅去哪吃,用Python可视化做个数据呈现决定吧(附学习资源)】
文章图片
推荐阅读
- 火锅
- 老母亲游记之麓山火锅道20190220
- 屏幕另一边的纠结
- 爱情就是“你要去哪,我跟你一起去”
- 休赛期3全明星去哪队算合理(詹皇该选火箭,考神不必留鹈鹕!)
- 勿花费太多时间纠结在不合适的人身上——日更40
- 《伯纳黛特,你要去哪》——来自盖乐街烦人精的吐槽
- 所谓烦恼,想的太多,做的太少
- 对兴盛小学曹阳《它们去哪里了》教学反思的思考
- 时间都去哪了#倒逼自己一把#日更90-51