一、背景
我们在编写 go 程序时,经常会创建一系列的协程,这些协程通常会被放到 P 维护的一个协程队列
那么协程被插入队列时遵循的顺序是如何的呢?到底是插到队头还是队尾呢?
二、源码分析
golang 版本: 1.11
源码位置:runtime/proc.go
// Create a new g running fn with siz bytes of arguments.
// Put it on the queue of g's waiting to run.
// The compiler turns a go statement into a call to this.
// Cannot split the stack because it assumes that the arguments
// are available sequentially after &fn;
they would not be
// copied if a stack split occurred.
//go:nosplit
func newproc(siz int32, fn *funcval) {
argp := add(unsafe.Pointer(&fn), sys.PtrSize)
gp := getg()
pc := getcallerpc()
systemstack(func() {
newproc1(fn, (*uint8)(argp), siz, gp, pc)
})
}// Create a new g running fn with narg bytes of arguments starting
// at argp. callerpc is the address of the go statement that created
// this. The new g is put on the queue of g's waiting to run.
func newproc1(fn *funcval, argp *uint8, narg int32, callergp *g, callerpc uintptr) {
_g_ := getg() if fn == nil {
_g_.m.throwing = -1 // do not dump full stacks
throw("go of nil func value")
}
_g_.m.locks++ // disable preemption because it can be holding p in a local var
siz := narg
siz = (siz + 7) &^ 7 // We could allocate a larger initial stack if necessary.
// Not worth it: this is almost always an error.
// 4*sizeof(uintreg): extra space added below
// sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
if siz >= _StackMin-4*sys.RegSize-sys.RegSize {
throw("newproc: function arguments too large for new goroutine")
} _p_ := _g_.m.p.ptr()
newg := gfget(_p_)
if newg == nil {
newg = malg(_StackMin)
casgstatus(newg, _Gidle, _Gdead)
allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
}
if newg.stack.hi == 0 {
throw("newproc1: newg missing stack")
} if readgstatus(newg) != _Gdead {
throw("newproc1: new g is not Gdead")
} totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame
totalSize += -totalSize & (sys.SpAlign - 1)// align to spAlign
sp := newg.stack.hi - totalSize
spArg := sp
if usesLR {
// caller's LR
*(*uintptr)(unsafe.Pointer(sp)) = 0
prepGoExitFrame(sp)
spArg += sys.MinFrameSize
}
if narg > 0 {
memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
// This is a stack-to-stack copy. If write barriers
// are enabled and the source stack is grey (the
// destination is always black), then perform a
// barrier copy. We do this *after* the memmove
// because the destination stack may have garbage on
// it.
if writeBarrier.needed && !_g_.m.curg.gcscandone {
f := findfunc(fn.fn)
stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
// We're in the prologue, so it's always stack map index 0.
bv := stackmapdata(stkmap, 0)
bulkBarrierBitmap(spArg, spArg, uintptr(narg), 0, bv.bytedata)
}
} memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
newg.sched.sp = sp
newg.stktopsp = sp
newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function
newg.sched.g = guintptr(unsafe.Pointer(newg))
gostartcallfn(&newg.sched, fn)
newg.gopc = callerpc
newg.ancestors = saveAncestors(callergp)
newg.startpc = fn.fn
if _g_.m.curg != nil {
newg.labels = _g_.m.curg.labels
}
if isSystemGoroutine(newg) {
atomic.Xadd(&sched.ngsys, +1)
}
newg.gcscanvalid = false
casgstatus(newg, _Gdead, _Grunnable) if _p_.goidcache == _p_.goidcacheend {
// Sched.goidgen is the last allocated id,
// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
// At startup sched.goidgen=0, so main goroutine receives goid=1.
_p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
_p_.goidcache -= _GoidCacheBatch - 1
_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
}
newg.goid = int64(_p_.goidcache)
_p_.goidcache++
if raceenabled {
newg.racectx = racegostart(callerpc)
}
if trace.enabled {
traceGoCreate(newg, newg.startpc)
}
runqput(_p_, newg, true) if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 && mainStarted {
wakep()
}
_g_.m.locks--
if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
_g_.stackguard0 = stackPreempt
}
}
当我们执行 go func(){...}() 调用,创建新的协程时,底层会调用 runtime.newproc() 函数
而真实实现 goroutine 入队的语句位于newproc1() 函数内
继续跟踪到 runqput 的实现runqput(_p_, newg, true)// 将 g 放入 p 任务队列
// runqput tries to put g on the local runnable queue.
// If next is false, runqput adds g to the tail of the runnable queue.
// If next is true, runqput puts g in the _p_.runnext slot.
// If the run queue is full, runnext puts g on the global queue.
// Executed only by the owner P.
func runqput(_p_ *p, gp *g, next bool) {
if randomizeScheduler && next && fastrand()%2 == 0 {
next = false
} if next {
retryNext:
oldnext := _p_.runnext
if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
goto retryNext
}
if oldnext == 0 {
return
}
// Kick the old runnext out to the regular run queue.
gp = oldnext.ptr()
}retry:
h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
t := _p_.runqtail
if t-h < uint32(len(_p_.runq)) {
_p_.runq[t%uint32(len(_p_.runq))].set(gp)
atomic.Store(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
return
}
if runqputslow(_p_, gp, h, t) {
return
}
// the queue is not full, now the put above must succeed
goto retry
}
我们发现,当 next 参数为 true 时,新 goroutine 是会被追加到队列头的,也就会先被调度
也就是不考虑调度器影响,goroutine 队列是后进先出的(头部插入,头部取出)
三、实验验证
执行如下代码:
package mainimport (
"runtime"
"fmt"
)func main() {
runtime.GOMAXPROCS(1) // 协程 1
go func() {
fmt.Println("hello world")
}() // 协程 2
go func() {
for {}
}() select {}
}
按照我们的分析,上述代码的执行是这样的:
1. 创建一个主协程,执行 main 代码,创建出两个协程;
2. 主协程遇到 select{} 阻塞,runtime 创建新的 M 接管 P,此时 P 队列里有两个协程
因为遵循头插原则,因此队列头是 协程 2,队列尾是协程 1
3. M 首先取出 协程 2 运行,遇到死循环(既不阻塞,也没有函数调用),因此不会放弃 CPU
4. 结果就是 M 一直执行协程 2,协程 1 得不到执行
上述代码执行结果:
文章图片
【Golang|goroutine 队列插入顺序分析】如果我们颠倒两个协程的顺序呢?
package mainimport (
"runtime"
"fmt"
)func main() {
runtime.GOMAXPROCS(1) // 协程 2
go func() {
for {}
}() // 协程 1
go func() {
fmt.Println("hello world")
}() select {}
}
上述代码的执行结果:
文章图片
可以看到,首先执行的协程1,有了输出,而后执行协程2,进入死循环。
这个运行顺序是符合我们的预期的,也就是在只有一个 P 队列的情况下,后来的 G 会被优先执行。
goroutine 入队采用头插模式。
推荐阅读
- 【C】题目|【C语言】题集 of ⑥
- 游戏|2022年如何学习前端前沿技术,破卷而出()
- 分布式|《Python3网络爬虫开发实战(第二版)》内容介绍
- 机器学习|机器学习Sklearn学习总结
- Python|Python实战(使用线性回归预测房价)
- docker|Docker
- 腾讯|SaaS的收入模型有哪些(终于有人讲明白了)
- python|Python绘制冬奥吉祥物“冰墩墩”
- 大数据|【新书速递】流量运营教科书
- 编程语言|TIOBE 5月编程语言排行(Python再次挤掉Java,夺下榜二!)