一、前言
我们知道,goroutine 是有大小的,当 发送满 /读取空 时,会阻塞对应的 发送/读取 goroutine 协程。
那么,当 Channel 可用时,它是按照什么顺序唤醒等待的 goroutine 协程的呢?
带着这个问题,我们深入 chan 的源码逻辑,去一探究竟。
剧透结论:先阻塞的先被唤醒!
二、chan 源码分析
分析的 go 版本:1.11
源码位置:runtime/chan.go
2.1chan 结构
type hchan struct {
qcountuint// total data in the queue
dataqsiz uint// size of the circular queue
bufunsafe.Pointer // points to an array of dataqsiz elements
elemsize uint16
closeduint32
elemtype *_type // element type
sendxuint// send index
recvxuint// receive index
recvqwaitq// list of recv waiters
sendqwaitq// list of send waiters // lock protects all fields in hchan, as well as several
// fields in sudogs blocked on this channel.
//
// Do not change another G's status while holding this lock
// (in particular, do not ready a G), as this can deadlock
// with stack shrinking.
lock mutex
}
成员意义如下:
2.2c <- x 执行过程分析
- qcount: 当前队列中的元素数量
- dataqsiz: 队列可以容纳的元素数量, 如果为 0 表示这个 channel 无缓冲区
- buf: 队列的缓冲区指针, 指向一个环形数组
- elemsize: 元素的大小
- closed: 是否已关闭
- elemtype: 元素的类型, 判断是否调用写屏障时使用
- sendx: 发送元素的序号
- recvx: 接收元素的序号
- recvq: 当前等待从 channel 接收数据的 G 的链表
- sendq: 当前等待发送数据到 channel 的 G 的链表
- lock: 操作 channel 时使用的线程锁
首先找到,该语句的执行入口:
// entry point for c <- x from compiled code
//go:nosplit
func chansend1(c *hchan, elem unsafe.Pointer) {
chansend(c, elem, true, getcallerpc())
}
从该函数的注释,我们也可以知道,这就是向 channel 发送数据时真正执行的函数了。
跟踪到实际调用的函数chansend
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if c == nil {
if !block {
return false
}
gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2)
throw("unreachable")
} if debugChan {
print("chansend: chan=", c, "\n")
} if raceenabled {
racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))
} // Fast path: check for failed non-blocking operation without acquiring the lock.
//
// After observing that the channel is not closed, we observe that the channel is
// not ready for sending. Each of these observations is a single word-sized read
// (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
// Because a closed channel cannot transition from 'ready for sending' to
// 'not ready for sending', even if the channel is closed between the two observations,
// they imply a moment between the two when the channel was both not yet closed
// and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
//
// It is okay if the reads are reordered here: if we observe that the channel is not
// ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first observation.
if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||
(c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {
return false
} var t0 int64
if blockprofilerate > 0 {
t0 = cputicks()
} lock(&c.lock) if c.closed != 0 {
unlock(&c.lock)
panic(plainError("send on closed channel"))
} if sg := c.recvq.dequeue();
sg != nil {
// Found a waiting receiver. We pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
send(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true
} if c.qcount < c.dataqsiz {
// Space is available in the channel buffer. Enqueue the element to send.
qp := chanbuf(c, c.sendx)
if raceenabled {
raceacquire(qp)
racerelease(qp)
}
typedmemmove(c.elemtype, qp, ep)
c.sendx++
if c.sendx == c.dataqsiz {
c.sendx = 0
}
c.qcount++
unlock(&c.lock)
return true
} if !block {
unlock(&c.lock)
return false
} // Block on the channel. Some receiver will complete our operation for us.
gp := getg()
mysg := acquireSudog()
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
// No stack splits between assigning elem and enqueuing mysg
// on gp.waiting where copystack can find it.
mysg.elem = ep
mysg.waitlink = nil
mysg.g = gp
mysg.isSelect = false
mysg.c = c
gp.waiting = mysg
gp.param = nil
c.sendq.enqueue(mysg)
goparkunlock(&c.lock, waitReasonChanSend, traceEvGoBlockSend, 3) // someone woke us up.
if mysg != gp.waiting {
throw("G waiting list is corrupted")
}
gp.waiting = nil
if gp.param == nil {
if c.closed == 0 {
throw("chansend: spurious wakeup")
}
panic(plainError("send on closed channel"))
}
gp.param = nil
if mysg.releasetime > 0 {
blockevent(mysg.releasetime-t0, 2)
}
mysg.c = nil
releaseSudog(mysg)
return true
}
chansend 的定义很长,我们重点关注对接收者的唤醒,即这句:
if sg := c.recvq.dequeue();
sg != nil {
// Found a waiting receiver. We pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
send(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true
}
可以看到,唤醒的接收者是从 recvq 队列里出队得到的,也就是说是先进先出,先阻塞先被唤醒的
相应的 chanrecv 函数对于发送者 goroutine的唤醒机制也是类似的,先阻塞先被唤醒
2.3实验验证
package mainimport (
"fmt"
"sync"
"time"
"runtime"
)func main() { runtime.GOMAXPROCS(1) var ch = make(chan int) wg := sync.WaitGroup{}
wg.Add(3) go func(ch <-chan int) {
defer wg.Done()
fmt.Println("Blocking 1")
value := <-ch
fmt.Println("Goroutine 1 read: ", value)
}(ch) go func(ch <-chan int) {
defer wg.Done()
fmt.Println("Blocking 2")
value := <-ch
fmt.Println("Goroutine 2 read: ", value)
}(ch) go func(ch <-chan int) {
defer wg.Done()
fmt.Println("Blocking 3")
value := <-ch
fmt.Println("Goroutine 3 read: ", value)
}(ch) time.Sleep(time.Second * 1) ch <- 3
ch <- 6
ch <- 9 close(ch)
wg.Wait()}
上述代码,创建了三个 goroutine 等待读取 ch,虽然谁先调用读取是不确定的,
但是,谁先调用了读取并被阻塞,谁就能在通道数据可用时先被唤醒
运行结果如下:
文章图片
可以看到,阻塞协程的编号依次是 1 2 3,而 1 2 3 读出的内容确实也是有序的:
最先阻塞的协程最先读取输入内容,即 goroutine 1 读取到输入 3, 2 读取到 6, 3 读取到 9
而我们向 channel 写入的顺序正是 3 6 9
这侧面印证了每次唤醒都是有序的!
注意,该实验中设置了 runtime.GOMAXPROCS(1),因为多 P 环境下,不利于分析唤醒顺序。
这是因为可能几乎同时会唤醒多个 goroutine,会发生读取争抢,顺序就不能保证了。
如果不使用 runtime.GOMAXPROCS(1) 的方式,那在发送间增加 sleep 也可以达到同样的验证目的
验证代码的另一种写法(不使用 runtime.GOMAXPROCS(1) ):
package mainimport (
"fmt"
"sync"
"time"
)func main() { var ch = make(chan int) wg := sync.WaitGroup{}
wg.Add(3) go func(ch <-chan int) {
defer wg.Done()
fmt.Println("Blocking 1")
value := <-ch
fmt.Println("Goroutine 1 read: ", value)
}(ch) go func(ch <-chan int) {
defer wg.Done()
fmt.Println("Blocking 2")
value := <-ch
fmt.Println("Goroutine 2 read: ", value)
}(ch) go func(ch <-chan int) {
defer wg.Done()
fmt.Println("Blocking 3")
value := <-ch
fmt.Println("Goroutine 3 read: ", value)
}(ch) time.Sleep(time.Second * 1) ch <- 3
time.Sleep(time.Second * 1)
ch <- 6
time.Sleep(time.Second * 1)
ch <- 9 close(ch)
wg.Wait()}
【Golang|Golang 中 Channel 对阻塞 goroutine 的唤醒顺序分析】2.4特别说明
当 channel 关闭时,会唤醒所有等待的协程。
推荐阅读
- 【C】题目|【C语言】题集 of ⑥
- 游戏|2022年如何学习前端前沿技术,破卷而出()
- 分布式|《Python3网络爬虫开发实战(第二版)》内容介绍
- 机器学习|机器学习Sklearn学习总结
- Python|Python实战(使用线性回归预测房价)
- docker|Docker
- 腾讯|SaaS的收入模型有哪些(终于有人讲明白了)
- python|Python绘制冬奥吉祥物“冰墩墩”
- 大数据|【新书速递】流量运营教科书
- 编程语言|TIOBE 5月编程语言排行(Python再次挤掉Java,夺下榜二!)