限流实现-Eureka-client 的RateLimiter

/*

  • Copyright 2014 Netflix, Inc.
    *
  • Licensed under the Apache License, Version 2.0 (the "License");
  • you may not use this file except in compliance with the License.
  • You may obtain a copy of the License at
    *
  • http://www.apache.org/license...
    *
  • Unless required by applicable law or agreed to in writing, software
  • distributed under the License is distributed on an "AS IS" BASIS,
  • WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  • See the License for the specific language governing permissions and
  • limitations under the License.
    */
package com.netflix.discovery.util;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
/**
  • Rate limiter implementation is based on token bucket algorithm. There are two parameters:
    • burst size - maximum number of requests allowed into the system as a burst
    • average rate - expected number of requests per second (RateLimiters using MINUTES is also supported)

    *
  • @author Tomasz Bak
    */
public class RateLimiter {
private final long rateToMsConversion; private final AtomicInteger consumedTokens = new AtomicInteger(); private final AtomicLong lastRefillTime = new AtomicLong(0); @Deprecated public RateLimiter() { this(TimeUnit.SECONDS); }public RateLimiter(TimeUnit averageRateUnit) { switch (averageRateUnit) { case SECONDS: rateToMsConversion = 1000; break; case MINUTES: rateToMsConversion = 60 * 1000; break; default: throw new IllegalArgumentException("TimeUnit of " + averageRateUnit + " is not supported"); } }public boolean acquire(int burstSize, long averageRate) { return acquire(burstSize, averageRate, System.currentTimeMillis()); }public boolean acquire(int burstSize, long averageRate, long currentTimeMillis) { if (burstSize <= 0 || averageRate <= 0) { // Instead of throwing exception, we just let all the traffic go return true; }refillToken(burstSize, averageRate, currentTimeMillis); return consumeToken(burstSize); }private void refillToken(int burstSize, long averageRate, long currentTimeMillis) { long refillTime = lastRefillTime.get(); long timeDelta = currentTimeMillis - refillTime; long newTokens = timeDelta * averageRate / rateToMsConversion; if (newTokens > 0) { long newRefillTime = refillTime == 0 ? currentTimeMillis : refillTime + newTokens * rateToMsConversion / averageRate; if (lastRefillTime.compareAndSet(refillTime, newRefillTime)) { while (true) { int currentLevel = consumedTokens.get(); int adjustedLevel = Math.min(currentLevel, burstSize); // In case burstSize decreased int newLevel = (int) Math.max(0, adjustedLevel - newTokens); if (consumedTokens.compareAndSet(currentLevel, newLevel)) { return; } } } } }private boolean consumeToken(int burstSize) { while (true) { int currentLevel = consumedTokens.get(); if (currentLevel >= burstSize) { return false; } if (consumedTokens.compareAndSet(currentLevel, currentLevel + 1)) { return true; } } }public void reset() { consumedTokens.set(0); lastRefillTime.set(0); }

【限流实现-Eureka-client 的RateLimiter】}

    推荐阅读