(Caffe)基本类Blob,Layer,Net(一)

本文地址:http://blog.csdn.net/mounty_fsc/article/details/51085654
Caffe中,Blob。Layer,Net,Solver是最为核心的类,下面介绍这几个类,Solver将在下一节介绍。
1 Blob 1.1 简单介绍
Blob是:
  1. 对待处理数据带一层封装,用于在Caffe中通信传递。
  2. 也为CPU和GPU间提供同步能力
  3. 数学上,是一个N维的C风格的存储数组
    总的来说。Caffe使用Blob来交流数据,其是Caffe中标准的数组与统一的内存接口,它是多功能的。在不同的应用场景具有不同的含义,如能够是:batches of images, model parameters, and derivatives for optimization等。
1.2 源码
/** * @brief A wrapper around SyncedMemory holders serving as the basic *computational unit through which Layer%s, Net%s, and Solver%s *interact. * * TODO(dox): more thorough description. */ template class Blob { public: Blob() : data_(), diff_(), count_(0), capacity_(0) {}/// @brief Deprecated; use Blob(const vector& shape). explicit Blob(const int num, const int channels, const int height, const int width); explicit Blob(const vector& shape); ..... protected: shared_ptr data_; shared_ptr diff_; shared_ptr shape_data_; vector shape_; int count_; int capacity_; DISABLE_COPY_AND_ASSIGN(Blob); }; // class Blob

注:此处仅仅保留了构造函数与成员变量。

说明:
  1. Blob在实现上是对SyncedMemory(见1.5部分)进行了一层封装。
  2. shape_为blob维度,见1.3部分
  3. data_为原始数据
  4. diff_为梯度信息
  5. count_为该blob的总容量(即数据的size)。函数count(x,y)(或count(x))返回某个切片[x,y]([x,end])内容量,本质上就是shape[x]shape[x+1]….*shape[y]的值
1.3 Blob的shape
由源码中能够注意到Blob有个成员变量:vector shape_
其作用:
  1. 对于图像数据,shape能够定义为4维的数组(Num, Channels, Height, Width)或(n, k, h, w)。所以Blob数据维度为n*k*h*w。Blob是row-major保存的,因此在(n, k, h, w)位置的值物理位置为((n * K + k) * H + h) * W + w。当中Number是数据的batch size,对于256张图片为一个training batch的ImageNet来说n = 256; Channel是特征维度,如RGB图像k = 3
  2. 对于全连接网络,使用2D blobs (shape (N, D))。然后调用InnerProductLayer
  3. 对于參数,维度依据该层的类型和配置来确定。对于有3个输入96个输出的卷积层,Filter核 11 x 11,则blob为96 x 3 x 11 x 11. 对于全连接层,1000个输出。1024个输入。则blob为1000 x 1024.
1.4 Blob的行优先的存储方式
以Blob中二维矩阵为例(如全连接网络shape (N, D))。如图所看到的。同样的存储方式能够推广到多维。

(Caffe)基本类Blob,Layer,Net(一)
文章图片

1.5 SyncedMemory
由1.2知。Blob本质是对SyncedMemory的再封装。
其核心代码例如以下:
/** * @brief Manages memory allocation and synchronization between the host (CPU) *and device (GPU). * * TODO(dox): more thorough description. */ class SyncedMemory { public: ... const void* cpu_data(); const void* gpu_data(); void* mutable_cpu_data(); void* mutable_gpu_data(); ... private: ... void* cpu_ptr_; void* gpu_ptr_; ... }; // class SyncedMemory

Blob同一时候保存了data_和diff_,其类型为SyncedMemory的指针。
对于data_(diff_同样),事实上际值要么存储在CPU(cpu_ptr_)要么存储在GPU(gpu_ptr_),有两种方式訪问CPU数据(GPU同样):
  1. 常量方式,void* cpu_data(),其不改变cpu_ptr_指向存储区域的值。
  2. 可变方式,void* mutable_cpu_data(),其可改变cpu_ptr_指向存储区值。
    以mutable_cpu_data()为例
    void* SyncedMemory::mutable_cpu_data() { to_cpu(); head_ = HEAD_AT_CPU; return cpu_ptr_; }inline void SyncedMemory::to_cpu() { switch (head_) { case UNINITIALIZED: CaffeMallocHost(&cpu_ptr_, size_, &cpu_malloc_use_cuda_); caffe_memset(size_, 0, cpu_ptr_); head_ = HEAD_AT_CPU; own_cpu_data_ = true; break; case HEAD_AT_GPU:#ifndef CPU_ONLYif (cpu_ptr_ == NULL) { CaffeMallocHost(&cpu_ptr_, size_, &cpu_malloc_use_cuda_); own_cpu_data_ = true; } caffe_gpu_memcpy(size_, gpu_ptr_, cpu_ptr_); head_ = SYNCED; #elseNO_GPU; #endifbreak; case HEAD_AT_CPU: case SYNCED: break; } }

说明:
  1. 经验上来说,假设不须要改变其值,则使用常量调用的方式,而且,不要在你对象中保存其指针。为何要这样设计呢。由于这样涉及能够隐藏CPU到GPU的同步细节,以及降低数据传递从而提高效率。当你调用它们的时候。SyncedMem会决定何时去复制数据,通常情况是仅当gnu或cpu改动后有复制操作,引用1官方文档中有一个样例说明何时进行复制操作。
  2. 调用mutable_cpu_data()能够让head转移到cpu上
  3. 第一次调用mutable_cpu_data()是UNINITIALIZED将运行9到14行。将为cpu_ptr_分配host内存
  4. 若head从gpu转移到cpu。将把数据从gpu拷贝到cpu中
2 Layer 2.1 简单介绍
Layer是Caffe的基础以及基本计算单元。Caffe十分强调网络的层次性,能够说。一个网络的大部分功能都是以Layer的形式去展开的,如convolute,pooling,loss等等。
在创建一个Caffe模型的时候,也是以Layer为基础进行的,需依照src/caffe/proto/caffe.proto中定义的网络及參数格式定义网络 prototxt文件(需了解google protocol buffer)
2.2 Layer与Blob的关系
如图,名为conv1的Layer 的输入是名为data的bottom blob,其输出是名为conv1的top blob。
【(Caffe)基本类Blob,Layer,Net(一)】
(Caffe)基本类Blob,Layer,Net(一)
文章图片
其protobuff定义例如以下,一个layer有一个到多个的top和bottom,其相应于blob
layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" .... }

2.3 源码
/** * Layer%s must implement a Forward function, in which they take their input * (bottom) Blob%s (if any) and compute their output Blob%s (if any). * They may also implement a Backward function, in which they compute the error * gradients with respect to their input Blob%s, given the error gradients with * their output Blob%s. */ template class Layer { public: /** * You should not implement your own constructor. Any set up code should go * to SetUp(), where the dimensions of the bottom blobs are provided to the * layer. */ explicit Layer(const LayerParameter& param) : layer_param_(param), is_shared_(false) { ... } virtual ~Layer() {}/** * @brief Implements common layer setup functionality. * @param bottom the preshaped input blobs * @param top *the allocated but unshaped output blobs, to be shaped by Reshape */ void SetUp(const vector*>& bottom, const vector*>& top) { ... }.../** * @brief Given the bottom blobs, compute the top blobs and the loss. * \return The total loss from the layer. * * The Forward wrapper calls the relevant device wrapper function * (Forward_cpu or Forward_gpu) to compute the top blob values given the * bottom blobs.If the layer has any non-zero loss_weights, the wrapper * then computes and returns the loss. * * Your layer should implement Forward_cpu and (optionally) Forward_gpu. */ inline Dtype Forward(const vector*>& bottom, const vector*>& top); /** * @brief Given the top blob error gradients, compute the bottom blob error *gradients. * * @param top *the output blobs, whose diff fields store the gradient of the error *with respect to themselves * @param propagate_down *a vector with equal length to bottom, with each index indicating *whether to propagate the error gradients down to the bottom blob at *the corresponding index * @param bottom *the input blobs, whose diff fields will store the gradient of the error *with respect to themselves after Backward is run * * The Backward wrapper calls the relevant device wrapper function * (Backward_cpu or Backward_gpu) to compute the bottom blob diffs given the * top blob diffs. * * Your layer should implement Backward_cpu and (optionally) Backward_gpu. */ inline void Backward(const vector*>& top, const vector& propagate_down, const vector*>& bottom); ...protected: /** The protobuf that stores the layer parameters */ LayerParameter layer_param_; /** The phase: TRAIN or TEST */ Phase phase_; /** The vector that stores the learnable parameters as a set of blobs. */ vector > > blobs_; /** Vector indicating whether to compute the diff of each param blob. */ vector param_propagate_down_; /** The vector that indicates whether each top blob has a non-zero weight in *the objective function. */ vector loss_; virtual void Forward_cpu(const vector*>& bottom, const vector*>& top) = 0; virtual void Forward_gpu(const vector*>& bottom, const vector*>& top) { // LOG(WARNING) << "Using CPU code as backup."; return Forward_cpu(bottom, top); }virtual void Backward_cpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom) = 0; virtual void Backward_gpu(const vector*>& top, const vector& propagate_down, const vector*>& bottom) { // LOG(WARNING) << "Using CPU code as backup."; Backward_cpu(top, propagate_down, bottom); }...}; // class Layer

说明:每一层定义了三种操作
  1. Setup:Layer的初始化
  2. Forward:前向传导计算。依据bottom计算top,调用了Forward_cpu(必须实现)和Forward_gpu(可选,若未实现,则调用cpu的)
  3. Backward:反向传导计算。依据top计算bottom的梯度。其它同上
2.4 派生类分类
在Layer的派生类中,主要能够分为Vision Layers
  • Vision Layers
    Vison 层主要用于处理视觉图像相关的层。以图像作为输入,产生其它的图像。其主要特点是具有空间结构。
    包括Convolution(conv_layer.hpp)、Pooling(pooling_layer.hpp)、Local Response Normalization(LRN)(lrn_layer.hpp)、im2col等。注:老版本号的Caffe有头文件include/caffe/vision_layers.hpp,新版本号中用include/caffe/layer/conv_layer.hpp等代替
  • Loss Layers
    这些层产生loss,如Softmax(SoftmaxWithLoss)、Sum-of-Squares / Euclidean(EuclideanLoss)、Hinge / Margin(HingeLoss)、Sigmoid Cross-Entropy(SigmoidCrossEntropyLoss)、Infogain(InfogainLoss)、Accuracy and Top-k等
  • Activation / Neuron Layers
    元素级别的运算,运算均为同址计算(in-place computation。返回值覆盖原值而占用新的内存)。如:ReLU / Rectified-Linear and Leaky-ReLU(ReLU)、Sigmoid(Sigmoid)、TanH / Hyperbolic Tangent(TanH)、Absolute Value(AbsVal)、Power(Power)、BNLL(BNLL)等
  • Data Layers
    网络的最底层,主要实现数据格式的转换,如:Database(Data)、In-Memory(MemoryData)、HDF5 Input(HDF5Data)、HDF5 Output(HDF5Output)、Images(ImageData)、Windows(WindowData)、Dummy(DummyData)等
  • Common Layers
    Caffe提供了单个层与多个层的连接。如:Inner Product(InnerProduct)、Splitting(Split)、Flattening(Flatten)、Reshape(Reshape)、Concatenation(Concat)、Slicing(Slice)、Elementwise(Eltwise)、Argmax(ArgMax)、Softmax(Softmax)、Mean-Variance Normalization(MVN)等
注,括号内为Layer Type,没有括号暂缺信息。具体咱见引用2
3 Net 3.1 简单介绍
一个Net由多个Layer组成。
一个典型的网络从data layer(从磁盘中加载数据)出发到loss layer结束。如图是一个简单的逻辑回归分类器。

(Caffe)基本类Blob,Layer,Net(一)
文章图片
例如以下定义:
name: "LogReg" layer { name: "mnist" type: "Data" top: "data" top: "label" data_param { source: "input_leveldb" batch_size: 64 } } layer { name: "ip" type: "InnerProduct" bottom: "data" top: "ip" inner_product_param { num_output: 2 } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "ip" bottom: "label" top: "loss" }

3.2 源码
/** * @brief Connects Layer%s together into a directed acyclic graph (DAG) *specified by a NetParameter. * * TODO(dox): more thorough description. */ template class Net { public: ... /// @brief Initialize a network with a NetParameter. void Init(const NetParameter& param); ...const vector*>& Forward(const vector* > & bottom, Dtype* loss = NULL); ... /** * The network backward should take no input and output, since it solely * computes the gradient w.r.t the parameters, and the data has already been * provided during the forward pass. */ void Backward(); ... Dtype ForwardBackward(const vector* > & bottom) { Dtype loss; Forward(bottom, &loss); Backward(); return loss; } ... protected: ... /// @brief The network name string name_; /// @brief The phase: TRAIN or TEST Phase phase_; /// @brief Individual layers in the net vector > > layers_; /// @brief the blobs storing intermediate results between the layer. vector > > blobs_; vector*> > bottom_vecs_; vector*> > top_vecs_; ... /// The root net that actually holds the shared layers in data parallelism const Net* const root_net_; }; }// namespace caffe

说明:
  1. Init中,通过创建blob和layer搭建了整个网络框架,以及调用各层的SetUp函数。
  2. blobs_存放这每一层产生的blobls的中间结果。bottom_vecs_存放每一层的bottom blobs,top_vecs_存放每一层的top blobs
參考文献:
[1].http://caffe.berkeleyvision.org/tutorial/net_layer_blob.html
[2].http://caffe.berkeleyvision.org/tutorial/layers.html
[3].https://yufeigan.github.io
[4].https://www.zhihu.com/question/27982282

    推荐阅读