Eigen教程(7)

整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html
归约、迭代器和广播 归约 在Eigen中,有些函数可以统计matrix/array的某类特征,返回一个标量。

int main() { Eigen::Matrix2d mat; mat << 1, 2, 3, 4; cout << "Here is mat.sum():" << mat.sum()<< endl; cout << "Here is mat.prod():" << mat.prod()<< endl; cout << "Here is mat.mean():" << mat.mean()<< endl; cout << "Here is mat.minCoeff():" << mat.minCoeff()<< endl; cout << "Here is mat.maxCoeff():" << mat.maxCoeff()<< endl; cout << "Here is mat.trace():" << mat.trace()<< endl; }

范数计算
L2范数 squareNorm(),等价于计算vector的自身点积,norm()返回squareNorm的开方根。
这些操作应用于matrix,norm() 会返回Frobenius或Hilbert-Schmidt范数。
如果你想使用其他Lp范数,可以使用lpNorm< p >()方法。p可以取Infinity,表示L∞范数。
int main() { VectorXf v(2); MatrixXf m(2,2), n(2,2); v << -1, 2; m << 1,-2, -3,4; cout << "v.squaredNorm() = " << v.squaredNorm() << endl; cout << "v.norm() = " << v.norm() << endl; cout << "v.lpNorm<1>() = " << v.lpNorm<1>() << endl; cout << "v.lpNorm() = " << v.lpNorm() << endl; cout << endl; cout << "m.squaredNorm() = " << m.squaredNorm() << endl; cout << "m.norm() = " << m.norm() << endl; cout << "m.lpNorm<1>() = " << m.lpNorm<1>() << endl; cout << "m.lpNorm() = " << m.lpNorm() << endl; }

输出
v.squaredNorm() = 5 v.norm() = 2.23607 v.lpNorm<1>() = 3 v.lpNorm() = 2m.squaredNorm() = 30 m.norm() = 5.47723 m.lpNorm<1>() = 10 m.lpNorm() = 4

Operator norm: 1-norm和∞-norm可以通过其他方式得到。
int main() { MatrixXf m(2,2); m << 1,-2, -3,4; cout << "1-norm(m)= " << m.cwiseAbs().colwise().sum().maxCoeff() << " == "<< m.colwise().lpNorm<1>().maxCoeff() << endl; cout << "infty-norm(m) = " << m.cwiseAbs().rowwise().sum().maxCoeff() << " == "<< m.rowwise().lpNorm<1>().maxCoeff() << endl; }1-norm(m)= 6 == 6 infty-norm(m) = 7 == 7

布尔归约
【Eigen教程(7)】all()=true matrix/array中的所有算术是true any()=true matrix/array中至少有一个元素是true count() 返回为true元素的数目
#include #include using namespace std; using namespace Eigen; int main() { ArrayXXf a(2,2); a << 1,2, 3,4; cout << "(a > 0).all()= " << (a > 0).all() << endl; cout << "(a > 0).any()= " << (a > 0).any() << endl; cout << "(a > 0).count() = " << (a > 0).count() << endl; cout << endl; cout << "(a > 2).all()= " << (a > 2).all() << endl; cout << "(a > 2).any()= " << (a > 2).any() << endl; cout << "(a > 2).count() = " << (a > 2).count() << endl; }

输出
(a > 0).all()= 1 (a > 0).any()= 1 (a > 0).count() = 4(a > 2).all()= 0 (a > 2).any()= 1 (a > 2).count() = 2

迭代器(遍历) 当我们想获取某元素在Matrix或Array中的位置的时候,迭代器是必须的。常用的有:minCoeff和maxCoeff。
int main() { Eigen::MatrixXf m(2,2); m << 1, 2, 3, 4; //get location of maximum MatrixXf::Index maxRow, maxCol; float max = m.maxCoeff(&maxRow, &maxCol); //get location of minimum MatrixXf::Index minRow, minCol; float min = m.minCoeff(&minRow, &minCol); cout << "Max: " << max <<", at: " << maxRow << "," << maxCol << endl; cout << "Min: " << min << ", at: " << minRow << "," << minCol << endl; }Max: 4, at: 1,1 Min: 1, at: 0,0

部分归约 Eigen中支持对Matrx或Array的行/行进行归约操作。部分归约可以使用colwise()/rowwise()函数。
int main() { Eigen::MatrixXf mat(2,4); mat << 1, 2, 6, 9, 3, 1, 7, 2; std::cout << "Column's maximum: " << std::endl << mat.colwise().maxCoeff() << std::endl; }Column's maximum: 3 2 7 9

类似,针对行也可以,只是返回的是列向量而已。
int main() { Eigen::MatrixXf mat(2,4); mat << 1, 2, 6, 9, 3, 1, 7, 2; std::cout << "Row's maximum: " << std::endl << mat.rowwise().maxCoeff() << std::endl; }Row's maximum: 9 7

结合部分归约和其他操作 例子:寻找和最大的列向量。
int main() { MatrixXf mat(2,4); mat << 1, 2, 6, 9, 3, 1, 7, 2; MatrixXf::IndexmaxIndex; float maxNorm = mat.colwise().sum().maxCoeff(&maxIndex); std::cout << "Maximum sum at position " << maxIndex << std::endl; std::cout << "The corresponding vector is: " << std::endl; std::cout << mat.col( maxIndex ) << std::endl; std::cout << "And its sum is is: " << maxNorm << std::endl; }

输出
Maximum sum at position 2 The corresponding vector is: 6 7 And its sum is is: 13

广播 广播是针对vector的,将vector沿行/列重复构建一个matrix,便于后期运算。
int main() { Eigen::MatrixXf mat(2,4); Eigen::VectorXf v(2); mat << 1, 2, 6, 9, 3, 1, 7, 2; v << 0, 1; //add v to each column of m mat.colwise() += v; std::cout << "Broadcasting result: " << std::endl; std::cout << mat << std::endl; }

输出
Broadcasting result: 1 2 6 9 4 2 8 3

注意:对Array类型,*=,/=和/这些操作可以进行行/列级的操作,但不使用与Matrix,因为会与矩阵乘混淆。
结合广播和其他操作 示例:计算矩阵中哪列与目标向量距离最近。
int main() { Eigen::MatrixXf m(2,4); Eigen::VectorXf v(2); m << 1, 23, 6, 9, 3, 11, 7, 2; v << 2, 3; MatrixXf::Index index; // find nearest neighbour (m.colwise() - v).colwise().squaredNorm().minCoeff(&index); cout << "Nearest neighbour is column " << index << ":" << endl; cout << m.col(index) << endl; }

输出
Nearest neighbour is column 0: 1 3

    推荐阅读