深度学习工具箱DeepLearnToolbox master

【深度学习工具箱DeepLearnToolbox master】分析matlab里深度学习工具箱里的dbn的例子,对涉及到的函数进行简单注释分析,有助于程序理解,后续会应用在其他数据上进行注释。加了一些比较简单繁琐的注释。。。
以下函数为dbn例子,包括准备数据,设定dbn参数等
test_example_DBN调用了dbnsetup(构建DBN网络),dbntrain(训练DBN网络),dbnunfoldtonn(),nntrain,nntest。后面会逐个展示



%https://github.com/rasmusbergpalm/DeepLearnToolbox function test_example_DBN load mnist_uint8;

train_x = double(train_x) / 255;
test_x = double(test_x) / 255;
train_y = double(train_y);
test_y = double(test_y);
%% ex1 train a 100 hidden unit RBM and visualize its weights
%设定隐层单元数为100,而可视层单元数为输入向量的个数,由输入数据决定
rand(‘state’,0)
dbn.sizes = [100];
opts.numepochs = 1; %是计算时根据输出误差返回调整神经元权值和阀值的次数
%训练次数,用同样的样本集,别人训练的时候:1的时候11.41%error,5的时候4.2%error,10的时候2.73%error
opts.batchsize = 100; %每次挑出一个batchsize的batch来训练,也就是每用batchsize个样本就调整一次权值,而不是把所有样本都输入了,计算所有样本的误差了才调整一次权值
opts.momentum = 0; %动量
opts.alpha = 1; %学习率
dbn = dbnsetup(dbn, train_x, opts); %构建DBN网络,并返回
dbn = dbntrain(dbn, train_x, opts); %给定训练样本,训练网络
figure; visualize(dbn.rbm{1}.W’); % Visualize the RBM weights
%% ex2 train a 100-100 hidden unit DBN and use its weights to initialize a NN
rand(‘state’,0)
%train dbn
dbn.sizes = [100 100];
opts.numepochs = 1;
opts.batchsize = 100;
opts.momentum = 0;
opts.alpha = 1;
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);
%unfold dbn to nn
nn = dbnunfoldtonn(dbn, 10); %10为输出层节点数
nn.activation_function = ‘sigm’; %nnsetup底层里本身有激活函数的设定,
%但这里根据具体应用进行了改变
%train nn
opts.numepochs = 1;
opts.batchsize = 100;
%最后fine tuning就再训练一下NN就可以了
nn = nntrain(nn, train_x, train_y, opts);
%用测试样本测试
[er, bad] = nntest(nn, test_x, test_y);

assert(er < 0.10, ‘Too big error’);
dbnsetup.m,主要给每个rbm赋初始值,没有调用其他函数

function dbn = dbnsetup(dbn, x, opts)%构建dbn
n = size(x, 2); %列的个数代表维度,也即输入特征的数量,即可视层单元个数
dbn.sizes = [n, dbn.sizes]; %分别为可视层大小和隐层大小


%numel(A)返回数组A中元素个数 for u = 1 : numel(dbn.sizes) - 1%看有几个rbm?此时dbn.sizes=[784,100],numel(...)=2,所以是一个rbm %总体来说,dbn.sizes里的元素结果应该是【第一个rbm的可视层单元数即rbm1.v,rbm1.h,rbm2.h,rbm3.h,...】, %总之后一个rbm可视层的单元数即上个个rbm隐含层的单元数,所以就省略不写了,所以整个rbm的个数也就确定了, %即number(dbn.sizes)-1,下面,分别为每个rbm赋参数 dbn.rbm{u}.alpha= opts.alpha; %学习率 dbn.rbm{u}.momentum = opts.momentum; %动量 dbn.rbm{u}.W= zeros(dbn.sizes(u + 1), dbn.sizes(u)); %权重个数(隐层节点数,可视层节点数) dbn.rbm{u}.vW = zeros(dbn.sizes(u + 1), dbn.sizes(u)); %(隐层节点数,可视层节点数) %偏置 dbn.rbm{u}.b= zeros(dbn.sizes(u), 1); %可视层偏置,与可视层节点数对应 dbn.rbm{u}.vb = zeros(dbn.sizes(u), 1); dbn.rbm{u}.c= zeros(dbn.sizes(u + 1), 1); %隐含层偏置,与隐含层节点数对应,dbn.sizes(u + 1)为隐含层节点数 dbn.rbm{u}.vc = zeros(dbn.sizes(u + 1), 1); end

enddbntrain.m,训练dbn,对每个rbm进行训练,调用了rbmtrain和rbmup函数


function dbn = dbntrain(dbn, x, opts) n = numel(dbn.rbm); %看有几个rbm
< span style="color:#ff0000; "> dbn.rbm{1} = rbmtrain(dbn.rbm{1}, x, opts); < /span> %先对第一个rbm进行训练 %第一个参数是rbm的结构信息,第二个是训练数据,第三个是rbm训练信息 for i = 2 : n < span style="color:#ff0000; "> x = rbmup(dbn.rbm{i - 1}, x); < /span> %实现rbm间的连接,数据传递,前一个rbm的输出数据为后一个rbm的输入数据 dbn.rbm{i} = rbmtrain(dbn.rbm{i}, x, opts); %接着训练新的rbm end


end贴出被调用的两个函数

rbmtrain.m训练单个rbm,改变rbm参数,W,vW , c ,vc , b , vb

function rbm = rbmtrain(rbm, x, opts)%对单个rbm进行训练 assert(isfloat(x), 'x must be a float'); assert(all(x(:)>=0) && all(x(:)<=1), 'all data in x must be in [0:1]'); m = size(x, 1); %样本数 numbatches = m / opts.batchsize; %batchsize为调整一次权值所用的样本数,numbatches为所有样本都参与训练,需要调整几次权值
assert(rem(numbatches, 1) == 0, 'numbatches not integer'); %调整一次权值所用的样本数必须为整数for i = 1 : opts.numepochs%根据误差进行调整的次数 kk = randperm(m); %把1到m这些数随机打乱得到的一个数字序列。每次训练时,从其中拿出batchsize个样本,用来调整权值 err = 0; %定义误差 for l = 1 : numbatches batch = x(kk((l - 1) * opts.batchsize + 1 : l * opts.batchsize), :); %拿出指定数量的样本v1 = batch; %输入节点,即可视层节点 %repmat是复制和平铺矩阵函数,也即是为每一个样本分配一个隐含层的偏置 h1 = sigmrnd(repmat(rbm.c', opts.batchsize, 1) + v1 * rbm.W'); v2 = sigmrnd(repmat(rbm.b', opts.batchsize, 1) + h1 * rbm.W); h2 = sigm(repmat(rbm.c', opts.batchsize, 1) + v2 * rbm.W'); c1 = h1' * v1; c2 = h2' * v2; rbm.vW = rbm.momentum * rbm.vW + rbm.alpha * (c1 - c2)/ opts.batchsize; rbm.vb = rbm.momentum * rbm.vb + rbm.alpha * sum(v1 - v2)' / opts.batchsize; rbm.vc = rbm.momentum * rbm.vc + rbm.alpha * sum(h1 - h2)' / opts.batchsize; rbm.W = rbm.W + rbm.vW; rbm.b = rbm.b + rbm.vb; rbm.c = rbm.c + rbm.vc; err = err + sum(sum((v1 - v2) .^ 2)) / opts.batchsize; enddisp(['epoch ' num2str(i) '/' num2str(opts.numepochs)'. Average reconstruction error is: ' num2str(err / numbatches)]); end


end


rbmup.m ,为训练下一个rbm做准备

function x = rbmup(rbm, x)%输入参数为上一个rbm和训练数据 x = sigm(repmat(rbm.c', size(x, 1), 1) + x * rbm.W'); %rbm.c'为隐含层偏置的转置,size(x.1)为样本个数, %repmat是复制和平铺矩阵函数,也即是为每一个样本分配一个隐含层的偏置 %即Wx+c %也就是实现rbm之间的传递,后一个rbm的输入数据为前一个rbm的输出数据 end

bdntrain对dbn训练结束后,应用dbnunfoldtonn.m,用训练得到的权重初始化NN,调用了nnsetup函数


function nn = dbnunfoldtonn(dbn, outputsize) %DBNUNFOLDTONN Unfolds a DBN to a NN %dbnunfoldtonn(dbn, outputsize ) returns the unfolded dbn with a final %layer of size outputsize added. %或者说初始化Weight,是一个unsupervised learning,最后的supervised还得靠NN if(exist('outputsize','var')) size = [dbn.sizes outputsize]; %把输出层节点数添加到存放各层神经元个数的变量里 else size = [dbn.sizes]; end "color:#ff0000; ">nn = nnsetup(size); %根据网络结果建立网络 %把每一层展开后的Weight拿去初始化NN的Weight %注意dbn.rbm{i}.c拿去初始化了bias项的值 for i = 1 : numel(dbn.rbm)%1,2 nn.W{i} = [dbn.rbm{i}.c dbn.rbm{i}.W]; %W1=[W1.c W1.W],W2=[W2.c W2.W],c与对应的隐层节点数对应,大小相同 %c为(隐层节点数,1),W为(隐层节点数,可视层节点数),所以合起来的W1为(隐层节点数,可视层节点数+1) %也即c为隐含层各节点的偏置 end end

nnsetup.m,包含对参数初始化,W,vW

function nn = nnsetup(architecture) %NNSETUP creates a Feedforward Backpropagate Neural Network % nn = nnsetup(architecture) returns an neural network structure with n=numel(architecture) % layers, architecture being a n x 1 vector of layer sizes e.g. [784 100 10] %首先从传入的architecture中获得这个网络的整体结构,可以参照上面的样例调用nnsetup([784 100 10])加以理解 nn.size= architecture; nn.n= numel(nn.size); %nn.n表示这个网络有多少层,包括1个输入层,多个隐层,1个输出层,对于ex2,则为4层 %接下来是一大堆的参数,这个到具体用的时候再加以说明 nn.activation_function= 'tanh_opt'; %隐含层激活函数Activation functions of hidden layers: 'sigm' (sigmoid) or 'tanh_opt' (optimal tanh). nn.learningRate= 2; %learning rate Note: typically needs to be lower when using 'sigm' activation function and non-normalized inputs. nn.momentum= 0.5; %Momentum nn.scaling_learningRate= 1; %Scaling factor for the learning rate (each epoch) nn.weightPenaltyL2= 0; %L2 regularization nn.nonSparsityPenalty= 0; %Non sparsity penalty nn.sparsityTarget= 0.05; %Sparsity target nn.inputZeroMaskedFraction= 0; %Used for Denoising AutoEncoders nn.dropoutFraction= 0; %Dropout level (http://www.cs.toronto.edu/~hinton/absps/dropout.pdf) nn.testing= 0; %Internal variable. nntest sets this to one. nn.output= 'sigm'; %输出单元,是不是用换成‘linear’??output unit 'sigm' (=logistic), 'softmax' and 'linear' %对每一层的网络结构进行初始化,一共三个参数W,vW,p,其中W是主要的参数 %vW是更新参数时的临时参数,p是所谓的sparsity,(等看到代码了再细讲) for i = 2 : nn.n%对于ex2,则从2,3,4 % weights and weight momentum,加1加的是偏置??? %W1,W2,W3vW1,vW2,vW3 %W1连接的是输入层和第一个隐层 %W2连接的是第一个隐层和第二个隐层 %W3连接的是第二个隐层和输出层 %W1为(第一个隐层单元个数,输入层单元个数+1),后面一长串改变值是为了什么?? nn.W{i - 1} = (rand(nn.size(i), nn.size(i - 1)+1) - 0.5) * 2 * 4 * sqrt(6 / (nn.size(i) + nn.size(i - 1))); nn.vW{i - 1} = zeros(size(nn.W{i - 1})); %与W对应
% average activations (for use with sparsity) %分别为p2,p3,p4,每个的大小相同,都为1行4列 nn.p{i}= zeros(1, nn.size(i)); end


end接着是nntrain.m,训练NN,


function [nn, L]= nntrain(nn, train_x, train_y, opts, val_x, val_y) %NNTRAIN trains a neural net % [nn, L] = nnff(nn, x, y, opts) trains the neural network nn with input x and % output y for opts.numepochs epochs, with minibatches of size % opts.batchsize. Returns a neural network nn with updated activations, % errors, weights and biases, (nn.a, nn.e, nn.W, nn.b) and L, the sum % squared error for each training minibatch.

assert(isfloat(train_x), ‘train_x must be a float’);
assert(nargin == 4 || nargin == 6,‘number ofinput arguments must be 4 or 6’)
loss.train.e = []; %保存的是对训练数据进行前向传递,根据得到的网络输出值计算损失,并保存
%在nneval那里有改变,loss.train.e(end + 1) = nn.L;
loss.train.e_frac = []; %保存的是:对分类问题,用训练数据对网络进行测试,
%首先用网络预测得到预测分类,用预测分类与实际标签进行对比,保存错分样本的个数
%在nneval那里有改变,loss.train.e_frac(end+1) = er_train;
loss.val.e = []; %有关验证集
loss.val.e_frac = [];
opts.validation = 0;
if nargin == 6
opts.validation = 1; %6个参数则要进行验证
end
fhandle = [];
if isfield(opts,‘plot’) && opts.plot == 1
fhandle = figure();
end
%跳过那些检验传入数据是否正确的代码,直接到关键的部分
%denoising 的部分请参考论文:Extracting and Composing Robust Features with Denoising Autoencoders
m = size(train_x, 1); %m是训练样本的数量
%注意在调用的时候我们设置了opt,batchsize是做batch gradient时候的大小
batchsize = opts.batchsize;
numepochs = opts.numepochs;
numbatches = m / batchsize; %计算batch的数量
assert(rem(numbatches, 1) == 0, ‘numbatches must be a integer’);
L = zeros(numepochs*numbatches,1); %L用来存the sum squared error for each training minibatch.
n = 1; %n作为L的索引
%numepochs是循环的次数
for i = 1 : numepochs %记录一次训练所用的时间
tic;
kk = randperm(m); %把batches打乱顺序进行训练,randperm(m)生成一个乱序的1到m的数组 for l = 1 : numbatches batch_x = train_x(kk((l - 1) * batchsize + 1 : l * batchsize), :); %提取训练输入%Add noise to input (for use in denoising autoencoder) %加入noise,这是denoising autoencoder需要使用到的部分 %这部分请参见《Extracting and Composing Robust Features with Denoising Autoencoders》这篇论文 %具体加入的方法就是把训练样例中的一些数据调整变为0,inputZeroMaskedFraction表示了调整的比例 if(nn.inputZeroMaskedFraction ~= 0)%之前给该参数设定值为0,所以不会执行 batch_x = batch_x.*(rand(size(batch_x))> nn.inputZeroMaskedFraction); %(...> ...)的取值要么是1,要么是0,所以样本的取值要么不变,要么被置为0,也即加入了噪音 end %这三个函数 %nnff是进行前向传播,nnbp是后向传播,nnapplygrads是进行梯度下降 %我们在下面分析这些函数的代码 batch_y = train_y(kk((l - 1) * batchsize + 1 : l * batchsize), :); %提取训练输出nn = < span style="color:#ff0000; "> nnff(nn, batch_x, batch_y); < /span> %通过各层前向传递得到网络的输出,并计算误差和损失 nn = < span style="color:#ff0000; "> nnbp(nn); < /span> %计算从输入层到最后一个隐层的梯度dW nn = < span style="color:#ff0000; "> nnapplygrads(nn)< /span> ; %更新每层的权值和阈值L(n) = nn.L; %记录损失n = n + 1; end%用下一组batch继续进行训练t = toc; %训练结束后,用nneval,和训练数据,评价网络性能 if opts.validation == 1%如果参数为6个的话 loss = nneval(nn, loss, train_x, train_y, val_x, val_y); str_perf = sprintf('; Full-batch train mse = %f, val mse = %f', loss.train.e(end), loss.val.e(end)); else < span style="color:#ff0000; "> loss = nneval(nn, loss, train_x, train_y); < /span> %在nneval函数里对网络进行评价,继续用训练数据,并得到错分的样本数和错分率,都存在了loss里, %对应修改了上面提到的四个变量loss.train.e,loss.train.e_frac,loss.val.e ,loss.val.e_frac str_perf = sprintf('; Full-batch train err = %f', loss.train.e(end)); %所有batch的训练误差 end if ishandle(fhandle) nnupdatefigures(nn, fhandle, loss, opts, i); %这个是画图 end%这个展示 disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Took ' num2str(t) ' seconds' '. Mini-batch mean squared error on training set is ' num2str(mean(L((n-numbatches):(n-1)))) str_perf]); nn.learningRate = nn.learningRate * nn.scaling_learningRate; %更新学习率

end
end主要调用了nnff,nnbp,nnapplygrads,nneval

nnff.m
%nnff就是进行feedforward pass,其实非常简单,就是整个网络正向跑一次就可以了
%当然其中有dropout和sparsity的计算
%具体的参见论文“Improving Neural Networks with Dropout“和Autoencoders and Sparsity

function nn = nnff(nn, x, y) %通过前向传递得到各层的输出,整个网络的误差和损失(nn.a, nn.e and nn.L) %NNFF performs a feedforward pass % nn = nnff(nn, x, y) returns an neural network structure with updated % layer activations, error and loss (nn.a, nn.e and nn.L)
n = nn.n; %nn.n表示这个网络有多少层,包括1个输入层,多个隐层,1个输出层,对于ex2,则为4层 m = size(x, 1); %样本个数x = [ones(m,1) x]; %添加一列??,多了1列?? nn.a{1} = x; %a里边放的是什么??放的是每层神经元的值? %a1为输入层,直接为样本输入,为计算下层输入做准备%feedforward pass for i = 2 : n-1%计算中间层神经元的输出值, %根据选择的激活函数不同进行正向传播计算 %你可以回过头去看nnsetup里面的第一个参数activation_function %sigm就是sigmoid函数,tanh_opt就是tanh的函数,这个toolbox好像有一点改变 %tanh_opt是1.7159*tanh(2/3.*A) switch nn.activation_function case 'sigm' % Calculate the unit's outputs (including the bias term) %计算神经元的输出,依据偏置项,在dbnunfoldtonn里设定了W1,W2,输入为上一层的输出, nn.a{i} = sigm(nn.a{i - 1} * nn.W{i - 1}'); %a{i-1}为(样本数,特征数+1),W{i-1}为(隐层节点数,输入层节点数+1), %则W{i-1}的转置为(输入层节点数+1,隐层节点数),其实,特征数=输入层节点数 %所以最后的a{i}为sigm(【样本数,隐层节点数】)的值,即该隐层的输出 case 'tanh_opt' nn.a{i} = tanh_opt(nn.a{i - 1} * nn.W{i - 1}'); end %dropout的计算部分部分 dropoutFraction 是nnsetup中可以设置的一个参数 %dropout if(nn.dropoutFraction > 0)%在nnsetup中设置了该参数为0,所以这里跳过了 if(nn.testing) nn.a{i} = nn.a{i}.*(1 - nn.dropoutFraction); else nn.dropOutMask{i} = (rand(size(nn.a{i}))> nn.dropoutFraction); nn.a{i} = nn.a{i}.*nn.dropOutMask{i}; end end %计算sparsity,nonSparsityPenalty 是对没达到sparsitytarget的参数的惩罚系数 %calculate running exponential activations for use with sparsity if(nn.nonSparsityPenalty> 0)%在nnsetup中也设置了该参数为0,所以这里也跳过了 nn.p{i} = 0.99 * nn.p{i} + 0.01 * mean(nn.a{i}, 1); %所以p参数其实也没发挥作用 end%Add the bias term nn.a{i} = [ones(m,1) nn.a{i}]; %上面计算出来a{i}为(样本数,隐层节点数),现在加上一列,对应每个偏置 end switch nn.output%计算输出层的输出值,nn.output在nnsetup里进行了设定 case 'sigm' nn.a{n} = sigm(nn.a{n - 1} * nn.W{n - 1}'); case 'linear' nn.a{n} = nn.a{n - 1} * nn.W{n - 1}'; case 'softmax' nn.a{n} = nn.a{n - 1} * nn.W{n - 1}'; nn.a{n} = exp(bsxfun(@minus, nn.a{n}, max(nn.a{n},[],2))); nn.a{n} = bsxfun(@rdivide, nn.a{n}, sum(nn.a{n}, 2)); end%error and loss nn.e = y - nn.a{n}; %计算errorswitch nn.output case {'sigm', 'linear'} nn.L = 1/2 * sum(sum(nn.e .^ 2)) / m; case 'softmax' nn.L = -sum(sum(y .* log(nn.a{n}))) / m; end


endnnbp.m


%nnbp呢是进行back propagation的过程,过程还是比较中规中矩,和ufldl中的Neural Network讲的基本一致 %值得注意的还是dropout和sparsity的部分 function nn = nnbp(nn) %NNBP performs backpropagation %执行后项传播 % nn = nnbp(nn) returns an neural network structure with updated weights
n = nn.n; %nn.n表示这个网络有多少层,包括1个输入层,多个隐层,1个输出层,对于ex2,则为4层 sparsityError = 0; switch nn.output%d{i}就是这一层的delta值 case 'sigm' d{n} = - nn.e .* (nn.a{n} .* (1 - nn.a{n})); %由误差和网络的输出计算得到 case {'softmax','linear'} d{n} = - nn.e; end for i = (n - 1) : -1 : 2%n-1为倒数第一个隐层,2为第一个隐层 % Derivative of the activation function%激活函数的导数 switch nn.activation_function case 'sigm' d_act = nn.a{i} .* (1 - nn.a{i}); %由每个隐层的输出得到 case 'tanh_opt' d_act = 1.7159 * 2/3 * (1 - 1/(1.7159)^2 * nn.a{i}.^2); endif(nn.nonSparsityPenalty> 0)%该参数设为了0 pi = repmat(nn.p{i}, size(nn.a{i}, 1), 1); sparsityError = [zeros(size(nn.a{i},1),1) nn.nonSparsityPenalty * (-nn.sparsityTarget ./ pi + (1 - nn.sparsityTarget) ./ (1 - pi))]; end% Backpropagate first derivatives%反向传播一阶导数 if i+1==n % in this case in d{n} there is not the bias term to be removed%则i+1为输出层,本身没有偏置,不用移除偏置 d{i} = (d{i + 1} * nn.W{i} + sparsityError) .* d_act; % Bishop (5.56) else % in this case in d{i} the bias term has to be removed %移除偏置 d{i} = (d{i + 1}(:,2:end) * nn.W{i} + sparsityError) .* d_act; %d{i + 1}的第一列为偏置,被移除了 endif(nn.dropoutFraction> 0) %该值被置为0了 d{i} = d{i} .* [ones(size(d{i},1),1) nn.dropOutMask{i}]; endendfor i = 1 : (n - 1)%从输入层到最后一个隐层,计算dW,dW{i}基本就是计算的gradient了 if i+1==n nn.dW{i} = (d{i + 1}' * nn.a{i}) / size(d{i + 1}, 1); %d{i + 1}为输出层,则不用移除偏置 else nn.dW{i} = (d{i + 1}(:,2:end)' * nn.a{i}) / size(d{i + 1}, 1); %存在偏置,要移除掉 end end


end
%这只是实现的内容,代码中的d{i}就是这一层的delta值,在ufldl中有讲的
%dW{i}基本就是计算的gradient了,只是后面还要加入一些东西,进行一些修改
%具体原理参见论文“Improving Neural Networks with Dropout“ 以及 Autoencoders and Sparsity的内容nnapplygrads.m


function nn = nnapplygrads(nn) %NNAPPLYGRADS updates weights and biases with calculated gradients %用nnbp得到的梯度dW,更新权重和偏置, % nn = nnapplygrads(nn) returns an neural network structure with updated % weights and biases%更新权重和偏置后,返回网络结构
for i = 1 : (nn.n - 1)%更新每层的权值和阈值 if(nn.weightPenaltyL2> 0)%nnsetup中设定了该参数为0 dW = nn.dW{i} + nn.weightPenaltyL2 * [zeros(size(nn.W{i},1),1) nn.W{i}(:,2:end)]; else dW = nn.dW{i}; enddW = nn.learningRate * dW; if(nn.momentum> 0) nn.vW{i} = nn.momentum*nn.vW{i} + dW; dW = nn.vW{i}; endnn.W{i} = nn.W{i} - dW; end


end
%这个内容就简单了,nn.weightPenaltyL2 是weight decay的部分,也是nnsetup时可以设置的一个参数
%有的话就加入weight Penalty,防止过拟合,然后再根据momentum的大小调整一下,最后改变nn.W{i}即可nneval.m


function [loss] = nneval(nn, loss, train_x, train_y, val_x, val_y) %NNEVAL evaluates performance of neural network评价神经网络表现 % Returns a updated loss struct%返回更新后的loss损失结构 assert(nargin == 4 || nargin == 6, 'Wrong number of arguments');

nn.testing = 1;
% training performance
nn = nnff(nn, train_x, train_y);
%通过各层前向传递得到网络的输出,并计算误差和损失(nn.a, nn.e and nn.L)
loss.train.e(end + 1) = nn.L; %追加到后边,L为一个数?nnff计算了nn.L
% validation performance
if nargin == 6
nn = nnff(nn, val_x, val_y);
loss.val.e(end + 1) = nn.L;
end
nn.testing = 0;
%calc misclassification rate if softmax
if strcmp(nn.output,‘softmax’) %如果相等为1,则执行
[er_train, dummy] = “color:#ff0000; ”>nntest(nn, train_x, train_y); %返回值第一个为错分样本的个数,第二个为错分率
loss.train.e_frac(end+1) = er_train; %追加到后边,在nntrain里有定义,追加错分样本个数
if nargin == 6 [er_val, dummy]= nntest(nn, val_x, val_y); loss.val.e_frac(end+1)= er_val; end

end
endnntest.m


function [er, bad] = nntest(nn, x, y)%返回值er为错分样本的个数,bad为错分率 labels = "color:#ff0000; ">nnpredict(nn, x); %labels为针对分类问题的最后预测结果 [dummy, expected] = max(y,[],2); %y有10列,max(y,[],2)返回的是每一行(即每个样本)中最大值dummy及所在的列expected,列号对应的是第几类 %max(nn.a{end},[],2); 是返回每一行的最大值以及所在的列数,所以labels返回的就是标号啦 bad = find(labels ~= expected); %统计错误个数 er = numel(bad) / size(x, 1); %计算错误率 end %nntest再简单不过了,就是调用一下nnpredict,在和test的集合进行比较

nnpredict.m

function labels = nnpredict(nn, x) nn.testing = 1; nn = nnff(nn, x, zeros(size(x,1), nn.size(end))); %通过前向传递得到各层的输出,整个网络的误差和损失(nn.a, nn.e and nn.L) nn.testing = 0;
[dummy, i] = max(nn.a{end},[],2); %a{end}为输出层的结果 labels = i;


end
%继续非常简单,predict不过是nnff一次,得到最后的output~~
%max(nn.a{end},[],2); 是返回每一行的最大值以及所在的列数,所以labels返回的就是标号啦
%(这个test好像是专门用来test 分类问题的,我们知道nnff得到最后的值即可)我已经把自己绕晕了。。。

列个表,列出列出的函数

text_example_DBN dbnsetup
dbntrain rbmtrain
rbmup
dbnunflodtonn nnsetup
nntrain nnff
nnbp
nnapplygrads
nneval nntest nnpredict
nntest





    推荐阅读