基于卷积神经网络的图像语义分割
摘要传统的图像分割方法大部分是基于图像本身的特征提取,需要先在图像上生成不同的区域,再在区域上提取特征,对区域进行分类合并才能得到最终语义分割的结果,过程比较复杂,并且效果也有很大的提升空间。
第一章 绪论
1.1 课题背景 为了识别和分析前景,需要把前景即我们感兴趣的那个部分从一幅图像中选取出来,这就是图像分割所要探讨的问题。当前我们在探讨图像分割问题的时候,一般会对这个目标或者前景加上一定的语义信息,即语义标签,方便后续的研究工作。我们把加上语义的图像分割称为图像语义分割。
【基于卷积神经网络的图像语义分割】图像语义分割到目前为止没有找到一个广泛的方法,不少方法都是针对某一特定的数据集,同时也很难制定出一个判断分割算法好坏的标准。
从直观的角度来讲,一个好的图像语义分割应具备如下特性:①分割出来的不同语义区域对某种性质如灰度、纹理而言具有相似性,区域内部比较平整;
②相邻语义区域对分割所依据的性质有明显的差异;
③不同语义区域边界上是明确和规整的[3]。目前大多数图像语义分割方法只是满足上述特征的一个或者两个。如果关注分割区域的相同性约束,则分割区域比较容易产生不规则的边缘;
要是关注不同语义区域之间的差异,则易造成语义信息的分类错误。所以我们说,在具体的实现和研究中,不同的图像语义分割方法总是在各种约束中寻找一种平衡。
第二章 相关工作
2.1 图像语义分割
2.1.1 概述
图像分割就是将一张图片根据特定需求分成多个部分。图像分割的目的在于改变图片的表现形式从而使得其变得更容易分析[[6]。一般来说,图像分割就是根据图像本身一些特征,比如色彩,纹理等,把图像中不同位置的像素点具有相同特征的聚类成一个分类的过程。
2.2.2 图像分割技术常用方法
目前图像分割方法分为四类,即阂值分割方法、边缘检测方法、区域提取方法和结合特定理论工具的分割方法。
2.1.2.1 阈值分割方法 阈值分割方法是一种常见的区域并行技术,就是用一个或几个阈值将图像的灰度直方图分成几个类,认为图像中灰度值相同的像素属于同一物体。由于是直接利用图像的灰度特性,因此计算方面十分简单高效。但是,这种方法的关键是如何取得一个合适的阈值。而实际应用中,阈值设定易受噪声和光亮度影响。阂值分割算法的特点也比较容易理解,优点是计算简单高效。全局阂值对于灰度相差很大的不同目标和背景能进行有效的分割。当图像的灰度差异不明显或不同目标的灰度值范围有重叠时,应采用局部阂值或动态阂值分割法。另一方面,这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感,并且在边界处的效果也会比较差。总体来说,阂值法是一种简单并且十分有效的方法,特别是不同语义信息之间具有比较大的对比时,能够得到非常不错的效果。人们在实际的研究过程中,阂值法一般可以作为一系列图像处理过程的第一步。它的主要局限除了没有考虑空间特征以外,最基础的阂值法只能产生二值图像来进行二分类问题。
2.1.2.2 基于边缘的图像分割 基于边缘检测的分割方法,顾名思义,就是通过检测包含不同语义信息的边缘来进行图像的分割。该方法的依据在于不同的区域之间的边缘上像素灰度值的变化往往比较剧烈。那么,在实际的使用中,我们可以充分利用这点进行图像分割。
2.1. 2. 3基于区域的分割方法
基于区域的图像分割就是把具有相似性质的像素点进行连通,从而慢慢的组合成最终的分割区域结果。它主要是利用了图像的局部空间信息,能够有效地克服其他方法图像分割空间小的缺点。在基于区域的图像分割中,如果从全图出发,按区域属性特征相似的原则决定每个像素的区域归属,形成区域图,即区域生长的分割方法。如果从像素点出发,按区域属性特征相似的准则,将属性接近的像素点聚集为区域,则是区域增长的分割方法。如果综合利用上述两种方法,就是分裂合并的方法。也就是先将图像分割成小的区域,在根据不同小区域之间的相似性进行合并形成大区域。
2.1.3 图像语义分割 2.1.3.1 概述
推荐阅读
- 基于微信小程序带后端ssm接口小区物业管理平台设计
- 基于|基于 antd 风格的 element-table + pagination 的二次封装
- 基于爱,才会有“愿望”当“要求”。2017.8.12
- javaweb|基于Servlet+jsp+mysql开发javaWeb学生成绩管理系统
- JavaScript|vue 基于axios封装request接口请求——request.js文件
- 韵达基于云原生的业务中台建设 | 实战派
- EasyOA|EasyOA 基于SSM的实现 未完成总结与自我批判
- 基于stm32智能风扇|基于stm32智能风扇_一款基于STM32的智能灭火机器人设计
- stm32|基于STM32和freeRTOS智能门锁设计方案
- Python|Python 基于datetime库的日期时间数据处理