基于小波变换的图像融合
原理大家翻书去,最近做个小作业,做到了关于小波变换的图像融合。
clc;
clear all;
close all;
% 清理工作空间
clear
[imA,map1] = imread('A.tif');
M1 = double(imA) / 256;
[imB,map2] = imread('B.tif');
M2 = double(imB) / 256;
zt= 4;
wtype = 'haar';
%M1 - input image A
%M2 - input image B
%wtype使用的小波类型
%Y- fused image
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%%小波变换图像融合
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%小波变换的绝对值大的小波系数,对应着显著的亮度变化,也就是图像中的显著特征。所以,选择绝对值大
%%的小波系数作为我们需要的小波系数。【注意,前面取的是绝对值大小,而不是实际数值大小】
%%
%%低频部分系数采用二者求平均的方法
%%
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%[c0,s0] = wavedec2(M1, zt, wtype);
%多尺度二维小波分解[c1,s1] = wavedec2(M2, zt, wtype);
%多尺度二维小波分解%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%后面就可以进行取大进行处理。然后进行重构,得到一个图像
%%的小波系数,然后重构出总的图像效果。
%%取绝对值大的小波系数,作为融合后的小波系数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
KK = size(c1);
Coef_Fusion = zeros(1,KK(2));
Temp = zeros(1,2);
Coef_Fusion(1:s1(1,1)) = (c0(1:s1(1,1))+c1(1:s1(1,1)))/2;
%低频系数的处理
%这儿,连高频系数一起处理了,但是后面处理高频系数的时候,会将结果覆盖,所以没有关系%处理高频系数
MM1 = c0(s1(1,1)+1:KK(2));
MM2 = c1(s1(1,1)+1:KK(2));
mm = (abs(MM1)) > (abs(MM2));
Y= (mm.*MM1) + ((~mm).*MM2);
Coef_Fusion(s1(1,1)+1:KK(2)) = Y;
%处理高频系数end
%重构
Y = waverec2(Coef_Fusion,s0,wtype);
%显示图像
subplot(2,2,1);
imshow(M1);
colormap(gray);
title('input2');
axis square
subplot(2,2,2);
imshow(M2);
colormap(gray);
title('input2');
axis squaresubplot(223);
imshow(Y,[]);
colormap(gray);
title('融合图像');
axis square;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
效果图:
【基于小波变换的图像融合】
推荐阅读
- 基于微信小程序带后端ssm接口小区物业管理平台设计
- 基于|基于 antd 风格的 element-table + pagination 的二次封装
- 基于爱,才会有“愿望”当“要求”。2017.8.12
- javaweb|基于Servlet+jsp+mysql开发javaWeb学生成绩管理系统
- JavaScript|vue 基于axios封装request接口请求——request.js文件
- 读《沉默的大多数》有感(1)
- 霍夫变换与直线检测
- hough变换检测的matlab程序
- 韵达基于云原生的业务中台建设 | 实战派
- EasyOA|EasyOA 基于SSM的实现 未完成总结与自我批判