python多元函数回归 python 多元回归分析( 五 )


(2)如果要在模型中保留所有的自变量,那么应该:
(2.1)避免根据 tt统计量对单个参数 ββ 进行检验,
(2.2)对因变量 yy 值的推断(预测和估计)限定在自变量样本值的范围内 。
5.3选择变量避免共线性的几种方式,
在建立回归模型时,我们总是希望用最少的变量来说明问题,选择自变量的原则通常是对统计量进行显著性检验 , 检验的根据是:将一个或一个以上的自变量引入回归模型中时 , 是否使残差平方和 (SSE)(SSE) 显著减少,如果增加一个自变量使残差平方和 (SSE)(SSE) 显著减少,则说明有必要将这个变量引入回归模型中,否则,没有必要将这个变量引入回归模型中 。确定在模型中引入自变量 xixi 是否使残差平方和 (SSE)(SSE) 显著减少的方法,就是使用 FF 统计量的值作为一个标准,以此来确定在模型中增加一个自变量,还是从模型中剔除一个自变量 。
变量选择方式:
5.3.1 向前选择;
第一步: 对 kk 个自变量分别与因变量 yy 的一元线性回归模型,共有 kk 个,然后找到 FF 统计量的值最大的模型及其自变量 xixi 并将其首先引入模型 。
第二步: 在已经引入模型的 xixi 的基础上,再分别拟合 xixi 与模型外的 k?1k?1 个自变量的线性回归模型,挑选出 FF 值最大的含有两个自变量的模型 ,  依次循环、直到增加自变量不能导致 SSESSE 显著增加为止,
5.3.2向后剔除
第一步:先对所有的自变量进行线性回归模型 。然后考察 pkpk 个去掉一个自变量的模型,使模型的SSE值减小最少的自变量被挑选出来从模型中剔除,
第二步:考察 p?1p?1 个再去掉一个自变量的模型,使模型的SSE值减小最少的自变量被挑选出来从模型中剔除,直到剔除一个自变量不会使SSE值显著减小为止,这时,模型中的所剩自变量自然都是显著的 。
5.3.3逐步回归
是上面两个的结合、考虑的比较全,以后就用这个就可以 。
具体的分析过程、咱们以spss的多元回归分析结果为例 。
文章知识点与官方知识档案匹配
算法技能树首页概览
31292 人正在系统学习中
点击阅读全文
打开CSDN,阅读体验更佳
线性回归与非线性回归em分析/em简明教程(python版)-全程干货无废话
p 本课程主要讲述如何使用python进行线性回归与非线性回归分析,包括: /p p br / /p ul li 基于statsmodel的线性回归方法 /li li 基于sklearn的线性回归方法 /li li 基于Numpy的一元多项式非线性回归方法 /li li 基于sklearn的多元多项式非线性回归方法 /li li 基于scipy的通用曲线拟合非线性回归方法 /li /ul
继续访问
最新发布 判别分析在SPSS上的实现与结果分析——基于SPSS实验报告
已知分组类别,判断样本的类别
继续访问
多元回归分析(实例,讲解,详实).doc
非常好的多元回归分析资料 。多元回归分析原理 回归分析是一种处理变量的统计相关关系的一种数理统计方法 。回归分析的基本思想是: 虽然自变量和因变量之间没有严格的、确定性的函数关系, 但可以设法找出最能代表它们之间关系的数学表达形式 。
SPSS多元回归分析实例
用SPSS 在大多数的实际问题中,影响因变量的因素不是一个而是多个 , 我们称这类回问题为多元回归分析 。可以建立因变量y与各自变量xj(j=1,2,3,…,n)之间的多元线性回归模型
SPSS的线性回归分析
使用SPSS软件进行线性回归分析 , 包括回归分析概述 线性回归分析 回归方程的统计检验 多元回归分析中的其他问题 线性回归分析的基本操作 线性回归分析的应用举例 曲线估计

推荐阅读