python插值函数库 python rbf插值( 二 )


# 产生16个像素点不同的权重
def BiBubic(x):
x=abs(x)
if x=1:
return 1-2*(x**2)+(x**3)
elif x2:
return 4-8*x+5*(x**2)-(x**3)
else:
return 0
# 双三次插值算法
# dstH为目标图像的高,dstW为目标图像的宽
def BiCubic_interpolation(img,dstH,dstW):
scrH,scrW,_=img.shape
#img=np.pad(img,((1,3),(1,3),(0,0)),'constant')
retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)
for i in range(dstH):
for j in range(dstW):
scrx=i*(scrH/dstH)
scry=j*(scrW/dstW)
x=math.floor(scrx)
y=math.floor(scry)
u=scrx-x
v=scry-y
tmp=0
for ii in range(-1,2):
for jj in range(-1,2):
if x+ii0 or y+jj0 or x+ii=scrH or y+jj=scrW:
continue
tmp+=img[x+ii,y+jj]*BiBubic(ii-u)*BiBubic(jj-v)
retimg[i,j]=np.clip(tmp,0,255)
return retimg
im_path='../paojie.jpg'
image=np.array(Image.open(im_path))
image2=BiCubic_interpolation(image,image.shape[0]*2,image.shape[1]*2)
image2=Image.fromarray(image2.astype('uint8')).convert('RGB')
image2.save('BiCubic_interpolation.jpg')
三. 实验结果:
四. 参考内容:

python线性插值解析在缺失值填补上如果用前后的均值填补中间的均值python插值函数库,比如python插值函数库,0,空,1,python插值函数库我们希望中间填充0.5;或者0 , 空 , 空,1,python插值函数库我们希望中间填充0.33 , 0.67这样 。
可以用pandas的函数进行填充,因为这个就是线性插值法
df..interpolate()
dd=pd.DataFrame(data=https://www.04ip.com/post/[0,np.nan,np.nan,1])
dd.interpolate()
补充知识:线性插值公式简单推导
以上这篇python线性插值解析就是我分享给大家的全部内容python插值函数库了,希望能给大家一个参考,也希望大家多多支持 。
如何通过python实现三次样条插值spline函数可以实现三次样条插值 x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x,y,xx); plot(x,y,'o',xx,yy) 另外fnplt csapi这两个函数也是三次样条插值函数,具体你可以help一下!
python怎样对矩阵进行插值?首先需要创建数组才能对其进行其它操作 。
我们可以通过给array函数传递Python的序列对象创建数组,如果传递的是多层嵌套的序列,将创建多维数组(下例中的变量c):
a = np.array([1, 2, 3, 4])
b = np.array((5, 6, 7, 8))
c = np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]])
b
array([5, 6, 7, 8])
c
array([[1, 2, 3, 4],
[4, 5, 6, 7],
[7, 8, 9, 10]])
c.dtype
dtype('int32')
数组的大小可以通过其shape属性获得:
a.shape
(4,)
c.shape
【python插值函数库 python rbf插值】python插值函数库的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于python rbf插值、python插值函数库的信息别忘了在本站进行查找喔 。

推荐阅读