#混淆
name_index = 0
for raw_name in raw_name_list:
the_new_name = new_name_list[name_index]
line = line.replace(raw_name, the_new_name)
name_index += 1
file_content += line
f.close()
#重写文件
f = file(path_filename, 'w')
f.write(file_content)
f.close()
#遍历当前目录下的所有.cs文件
def confuse_all():
#获取当前目录
dir = os.getcwd()
for root, dirs, filename in os.walk(dir):
for file in filename:
path_filename = os.path.join(root, file)
if path_filename.endswith('.cs'):
confuse_file(path_filename)
print "Confuse File: ", path_filename
if __name__=="__main__":
create_new_name()
confuse_all()
#打印一下混淆的情况.
#如果用文本保存起来, 那么以后可以反混淆, 还原文件
print "Start Confuse ...."
for j in range(0, len(raw_name_list)) :
print raw_name_list[j] , " -- " , new_name_list[j]
print "Confuse Complete !"
Python sklearn.metrics模块混淆矩阵常用函数1.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)
参数分别为y实际类别、预测类别、返回值要求(True返回正确的样本占比,false返回的是正确分类的样本数量)
eg:
import numpy as np
from sklearn.metrics import accuracy_score
y_pred = [0, 2, 1, 3]
y_true = [0, 1, 2, 3]
accuracy_score(y_true, y_pred)
0.5
accuracy_score(y_true, y_pred, normalize=False)
2.classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2)
参数:真是类别,预测类别,目标类别名称
eg:
3.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)
输出为混淆矩阵
eg:
太多了,写3个常用的吧,具体参考help(metrics)
defcm_plot(y,yp):#参数为实际分类和预测分类
fromsklearn.metricsimportconfusion_matrix
#导入混淆矩阵函数
cm = confusion_matrix(y,yp)
#输出为混淆矩阵
importmatplotlib.pyplotasplt
#导入作图函数
plt.matshow(cm,cmap=plt.cm.Greens)
# 画混淆矩阵图 , 配色风格使用cm.Greens
plt.colorbar()
# 颜色标签
forxinrange(len(cm)):
foryinrange(len(cm)):
plt.annotate(cm[x,y],xy=(x,y),horizontalalignment='center',verticalalignment='center')
#annotate主要在图形中添加注释
# 第一个参数添加注释
# 第一个参数是注释的内容
# xy设置箭头尖的坐标
#horizontalalignment水平对齐
#verticalalignment垂直对齐
#其余常用参数如下:
# xytext设置注释内容显示的起始位置
# arrowprops 用来设置箭头
# facecolor 设置箭头的颜色
# headlength 箭头的头的长度
# headwidth 箭头的宽度
# width 箭身的宽度
plt.ylabel('True label')# 坐标轴标签
plt.xlabel('Predicted label')# 坐标轴标签
returnplt
#函数调用
cm_plot(train[:,3],tree.predict(train[:,:3])).show()
Python程序代码混淆、编译、打包、运行(桌面程序防破解向) 像Python这种解释性的语言,要想私有化部署的同时又保护好源码,就像是对于鱼和熊掌的追求 。
虽然做不到尽善尽美,但是对代码进行混淆,增加一点破解的难度 , 或许能规避一些泄露的风险 。
本次演示环境:linux
确保要发布的包根目录("demo")中有__main__.py文件,这个是程序执行入口 。
编译
批量改名.pyc文件
移动.pyc文件
清理.py文件
清理__pycache__文件夹
打包成zip
运行时只要将zip文件作为参数即可
最终整合脚本
调用方式
对于在变量和函数名上的混淆有点小儿科 , 而对于跨文件的类名的混淆又太容易实现 。
推荐阅读
- 抖音三月份直播话术,抖音直播半年庆祝福语
- 电脑怎么查视频号点赞记录,如何查看视频号点赞的人
- 华为升级鸿蒙后抠图,华为鸿蒙抠图如何放到桌面
- 微信小程序怎么搭建前台,微信小程序平台搭建的六个步骤
- 把java代码改成流程图 怎么把java代码变成exe
- 新媒体如何加薪,新媒体小白如何入行
- java爬虫程序spider,java爬虫代码示例
- ios养成游戏,ios养成游戏开店
- c语言函数如何返回结构体 函数返回结构体