快速排序java最优代码 java中快速排序算法( 二 )


int[] stack=new int[MAX_STACK_SIZE];
int top=-1;
int pivot;
int pivotIndex,l,r;
stack[++top]=0;
stack[++top]=data.length-1;
while(top0){
int j=stack[top--];
int i=stack[top--];
pivotIndex=(i+j)/2;
pivot=data[pivotIndex];
SortUtil.swap(data,pivotIndex,j);
//partition
l=i-1;
r=j;
do{
while(data[++l]pivot);
while((r!=0)(data[--r]pivot));
SortUtil.swap(data,l,r);
}
while(lr);
SortUtil.swap(data,l,r);
SortUtil.swap(data,l,j);
if((l-i)THRESHOLD){
stack[++top]=i;
stack[++top]=l-1;
}
if((j-l)THRESHOLD){
stack[++top]=l+1;
stack[++top]=j;
}
}
//new InsertSort().sort(data);
insertSort(data);
}
/**
* @param data
*/
private void insertSort(int[] data) {
int temp;
for(int i=1;idata.length;i++){
for(int j=i;(j0)(data[j]data[j-1]);j--){
SortUtil.swap(data,j,j-1);
}
}
}
}
java快速排序简单代码.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}排序算法是《数据结构与算法》中最基本的算法之一 。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大 , 一次不能容纳全部的排序记录 , 在排序过程中需要访问外存 。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等 。以下是快速排序算法:
快速排序是由东尼·霍尔所发展的一种排序算法 。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较 。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见 。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来 。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists) 。
快速排序又是一种分而治之思想在排序算法上的典型应用 。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法 。
快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快 , 而且效率高!它是处理大数据最快的排序算法之一了 。虽然 Worst Case 的时间复杂度达到了 O(n?),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道 。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

推荐阅读