#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下 , 直接调用keras提供的这个函数
label = np_utils.to_categorical(label, 10)
###############
#开始建立CNN模型
###############
#生成一个model
model = Sequential()
3、#第一个卷积层 , 4个卷积核,每个卷积核大小5*5 。1表示输入的图片的通道,灰度图为1通道 。
#border_mode可以是valid或者full , 具体看这里说明:
#激活函数用tanh
#你还可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))
model.add(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28)))
model.add(Activation('tanh'))
#第二个卷积层,8个卷积核 , 每个卷积核大小3*3 。4表示输入的特征图个数,等于上一层的卷积核个数
4、全连接层,先将前一层输出的二维特征图flatten为一维的 。
#Dense就是隐藏层 。16就是上一层输出的特征图个数 。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(128, init='normal'))
model.add(Activation('tanh'))
#Softmax分类,输出是10类别
model.add(Dense(10, init='normal'))
model.add(Activation('softmax'))
#############
#开始训练模型
##############
#使用SGD + momentum
#model.compile里的参数loss就是损失函数(目标函数)
sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])
#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True 。verbose=1 , 训练过程中输出的信息,0、1、2三种方式都可以,无关紧要 。show_accuracy=True,训练时每一个epoch都输出accuracy 。
#validation_split=0.2,将20%的数据作为验证集 。
model.fit(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)
"""
#使用data augmentation的方法
#一些参数和调用的方法,请看文档
datagen = ImageDataGenerator(
featurewise_center=True, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=True, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.2, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(data)
for e in range(nb_epoch):
print('-'*40)
print('Epoch', e)
print('-'*40)
print("Training...")
# batch train with realtime data augmentation
progbar = generic_utils.Progbar(data.shape[0])
for X_batch, Y_batch in datagen.flow(data, label):
loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)
progbar.add(X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )
2021-02-08 Python OpenCV GaussianBlur()函数borderType= None)函数
此函数利用高斯滤波器平滑一张图像 。该函数将源图像与指定的高斯核进行卷积 。
src:输入图像
ksize:(核的宽度,核的高度),输入高斯核的尺寸,核的宽高都必须是正奇数 。否则,将会从参数sigma中计算得到 。
推荐阅读
- u盘怎么自动传输到电脑上,u盘怎么自动传输到电脑上
- 如何制作视频引流顾客需求,视频引流的最快方法是什么
- 角色扮演女生的游戏好玩,角色扮演女生手游
- 影楼直播文案,直播宣传广告文案
- java代码实现网桥 java基于nio网络编程代码
- c语言mod函数怎么使用方法,c语言中mod函数怎么实现?
- vb.net中控件有哪些 vbnet console
- chatgpt有多火,ChatGpt有多火数据
- 鸿蒙系统wifi网络慢,鸿蒙系统wifi网络慢怎么解决