python指数函数图像 python里指数怎么写

Python matplotlib之函数图像绘制、线条rc参数设置为避免中文显示出错 , 需导入matplotlib.pylab库
1.2.1 确定数据
1.2.2 创建画布
1.2.3 添加标题
1.2.4 添加x,y轴名称
1.2.5 添加x,y轴范围
1.2.6 添加x,y轴刻度
1.2.7 绘制曲线、图例, 并保存图片
保存图片时,dpi为清晰度 , 数值越高越清晰 。请注意,函数结尾处,必须加plt.show(),不然图像不显示 。
绘制流程与绘制不含子图的图像一致,只需注意一点:创建画布 。
合理调整figsize、dpi,可避免出现第一幅图横轴名称与第二幅图标题相互遮盖的现象.
2.2.1 rc参数类型
2.2.2 方法1:使用rcParams设置
2.2.3 方法2:plot内设置
2.2.4 方法3:plot内简化设置
方法2中,线条形状,linestyle可简写为ls;线条宽度,linewidth可简写为lw;线条颜色 , color可简写为c,等等 。
python两个函数图像怎么分开画1、plt.legendplt.legend(loc=0)#显示图例的位置 。
2、plt.figureplt.figure(figsize=(14,6),dpi=80)#设置绘图区域的大小和像素 。
3、plt.xticksplt.xticks(new_year)#设置x轴的刻度线为new_year,new_year可以为数组 。
4、plt.xlabelplt.xlabel('year')#x轴标签 。
5、plt.plotplt.plot(number,color='blue',label="actualvalue")#将实际值的折线设置为蓝色 。
6、两个图分开fig,axes=plt.subplots(2,1 , sharex=True,figsize=(10,10)) 。
7、画竖直线plt.axvline(99 , linestyle="dotted",linewidth=4,color='r')#99表示横坐标 。
8、图片保存plt.savefig('timeseries_y.jpg') 。
python绘制函数图像raw_input获取的输入是字符串 , 不能直接用np.array,需要用split进行切分,然后强制转化成数值类型,才能用plot函数
我把你的代码稍微修改了一下,可能不太漂亮,不过能运行了
x=[1,2,3]
a = raw_input('function')
a = a.split(' ')#依空格对字符串a进行切分,如果是用逗号分隔,则改成a.split(',')
b = []
for i in range(len(a)):#把切分好的字符强制转化成int类型,如果是小数,将int改为float
b.append(int(a[i]))
plt.plot(x, b, label='x', color="green", linewidth=1)
python怎么表示指数?其中有两个非常漂亮的指数函数图就是用python的matplotlib画出来的 。这一期,我们将要介绍如何利用python绘制出如下指数函数 。
图 1 a1图 1 a1
我们知道当0 ,指数函数 是单调递减的,当a1 时 , 指数函数是单调递增的 。所以我们首先要定义出指数函数,将a值做不同初始化
import math
...
def exponential_func(x, a): #定义指数函数
y=math.pow(a, x)
return y
然后,利用numpy构造出自变量,利用上面定义的指数函数来计算出因变量
X=np.linspace(-4, 4, 40) #构造自变量组
Y=[exponential_func(x) for x in X] #求函数值
有了自变量和因变量的一些散点,那么就可以模拟我们平时画函数操作——描点绘图,利用下面代码就可以实现
import math
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axisartist as axisartist #导入坐标轴加工模块
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
fig=plt.figure(figsize=(6,4)) #新建画布
ax=axisartist.Subplot(fig,111) #使用axisartist.Subplot方法创建一个绘图区对象ax
fig.add_axes(ax) #将绘图区对象添加到画布中
def exponential_func(x, a=2): #定义指数函数
y=math.pow(a, x)
return y
X=np.linspace(-4, 4, 40) #构造自变量组
Y=[exponential_func(x) for x in X] #求函数值
ax.plot(X, Y) #绘制指数函数

推荐阅读