关于python图像识别函数的信息( 二 )


Python清晰可读的语法使得软件代码具有异乎寻常的易读性,甚至对那些不是最初接触和开发原始项目的程序员都 能具有这样的强烈感觉 。虽然某些程序员反对在Python代码中大量使用空格 。
不过 , 几乎人人都承认Python图像处理的可读性远胜于C或者Java , 后两 者都采用了专门的字符标记代码块结构、循环、函数以及其他编程结构的开始和结束 。提倡Python的人还宣称 , 采用这些字符可能会产生显著的编程风格差 异 , 使得那些负责维护代码的人遭遇代码可读性方面的困难 。转载
opencv-python 缺口识别一、cv函数
1、imread:读取图片
imread(image_path, flag):
images_path:图片路径 , 找不到不报错
flag:
1/cv2.IMREAD_COLOR:彩色图片,图片透明性会被忽略,默认参数
0/cv2.IMREAD_GRAYSCALE:灰色图片
-1/cv2.IMREAD_UNCHANGED:包括其alpha通道
2、imwrite
imwrite(img_path_name,img)
img_path_name:保存的文件名
img:文件对象
3、cvtColor
cvtColor(img,code)
img: 图像对象
code:
cv2.COLOR_RGB2GRAY: RGB转换到灰度模式
cv2.COLOR_RGB2HSV: RGB转换到HSV模式(hue,saturation,Value)
4、matchTemplate
matchTemplate(img_path, bg_path, cv2.TM_CCOEFF_NORMED)
img_path:对比图片
bg_path:背景图片
cv2.TM_CCOEFF_NORMED
```
【关于python图像识别函数的信息】 # encoding=utf8
import cv2
import numpyas np
def show(name):
cv2.imshow('Show', name)
cv2.waitKey(0)
cv2.destroyAllWindows()
def main():
otemp ='./images/tb.png'
oblk ='./images/bg.jpg'
target = cv2.imread(otemp, 0)
template = cv2.imread(oblk, 0)# 读取到两个图片,进行灰值化处理
w, h = target.shape[::-1]
aa = target.shape
print(aa)
print(w, h)
temp ='./images/temp.jpg'
targ ='./images/targ.jpg'
cv2.imwrite(temp, template)
cv2.imwrite(targ, target)# 处理后进行保存
target = cv2.imread(targ)
target = cv2.cvtColor(target, cv2.COLOR_BGR2GRAY)# 转化到灰度
target =abs(255 - target)# 返回绝对值
cv2.imwrite(targ, target)# 重新写入
target = cv2.imread(targ)
template = cv2.imread(temp)
result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)# 进行匹配
x, y = np.unravel_index(result.argmax(), result.shape)# 通过np转化为数值,就是坐标
print(y, x)
# 展示圈出来的区域
cv2.rectangle(template, (y, x), (y + w, x + h), (7, 249, 151), 2)
show(template)
return y, x
if __name__ =='__main__':
a, b = main()
```
常用的十大python图像处理工具原文标题:10 Python image manipulation tools.
作者 | Parul Pandey
翻译 | 安其罗乔尔、JimmyHua
今天,在我们的世界里充满了数据,图像成为构成这些数据的重要组成部分 。但无论是用于何种用途,这些图像都需要进行处理 。图像处理就是分析和处理数字图像的过程,主要旨在提高其质量或从中提取一些信息,然后可以将其用于某种用途 。
图像处理中的常见任务包括显示图像,基本操作如裁剪、翻转、旋转等,图像分割,分类和特征提取 , 图像恢复和图像识别 。Python成为这种图像处理任务是一个恰当选择,这是因为它作为一种科学编程语言正在日益普及,并且在其生态系统中免费提供许多最先进的图像处理工具供大家使用 。
让我们看一下可以用于图像处理任务中的常用 Python 库有哪些吧 。
1.scikit-image
scikit-image是一个开源的Python包 , 适用于numpy数组 。它实现了用于研究,教育和工业应用的算法和实用工具 。即使是那些刚接触Python生态系统的人,它也是一个相当简单直接的库 。此代码是由活跃的志愿者社区编写的,具有高质量和同行评审的性质 。

推荐阅读