滤波的目的:抽出对象的特征作为图像识别的特征模式;为适应图像处理的要求,消除图像数字化时混入的噪声 。
滤波处理的要求:不能损坏图像的轮廓及边缘等重要信息;图像清晰视觉效果好 。
平滑滤波是低频增强的空间滤波技术 , 目的:模糊和消除噪音 。
空间域的平滑滤波一般采用简单平均法,即求邻近像元点的平均亮度值 。邻域的大小与平滑的效果直接相关 , 邻域越大平滑效果越好,但是邻域过大,平滑也会使边缘信息的损失的越大 , 从而使输出图像变得模糊 。因此需要选择合适的邻域 。
滤波器:一个包含加权系数的窗口 , 利用滤波器平滑处理图像时,把这个窗口放在图像上 , 透过这个窗口来看我们得到的图像 。
线性滤波器:用于剔除输入信号中不想要的频率或者从许多频率中选择一个想要的频率 。
低通滤波器、高通滤波器、带通滤波器、带阻滤波器、全通滤波器、陷波滤波器
boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) - dst
均值滤波是方框滤波归一化后的特殊情况 。归一化就是要把处理的量缩放到一个范围内如 (0,1),以便统一处理和直观量化 。非归一化的方框滤波用于计算每个像素邻近内的积分特性 , 比如密集光流算法中用到的图像倒数的协方差矩阵 。
运行结果:
均值滤波是典型的线性滤波算法,主要方法为邻域平均法,即用一片图像区域的各个像素的均值来代替原图像中的各个像素值 。一般需要在图像上对目标像素给出一个模板(内核),该模板包括了其周围的临近像素(比如以目标像素为中心的周围8(3x3-1)个像素 , 构成一个滤波模板,即 去掉目标像素本身 ) 。再用模板中的全体像素的平均值来代替原来像素值 。即对待处理的当前像素点(x,y),选择一个模板 , 该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度个g(x,y),即个g(x , y)=1/m ∑f(x , y) ,其中m为该模板中包含当前像素在内的像素总个数 。
均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点 。
cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) → dst
结果:
高斯滤波:线性滤波,可以消除高斯噪声,广泛应用于图像处理的减噪过程 。高斯滤波就是对整幅图像进行加权平均的过程 , 每一个像素点的值 , 都由其本身和邻域内的其他像素值经过 加权平均 后得到 。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值 。
高斯滤波有用但是效率不高 。
高斯模糊技术生成的图像,其视觉效果就像是经过一个半透明屏幕在观察图像 , 这与镜头焦外成像效果散景以及普通照明阴影中的效果都明显不同 。高斯平滑也用于计算机视觉算法中的预先处理阶段,以增强图像在不同比例大小下的图像效果(参见尺度空间表示以及尺度空间实现) 。从数学的角度来看,图像的高斯模糊过程就是图像与正态分布做卷积 。由于正态分布又叫作高斯分布,所以这项技术就叫作高斯模糊 。
高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器 。高斯平滑滤波器对于抑制服从正态分布的噪声非常有效 。
推荐阅读
- u盘推荐什么牌子,u盘什么牌子好 速度快
- html5元素块元素,html5article元素
- 团体角色扮演游戏,角色扮演游戏活动
- 移植常用命令到linux linux riscv移植
- 监控是什么样子视频,监控是什么样子视频播放器
- 手机版玩赛车的游戏有哪些,手机版玩赛车的游戏有哪些软件
- excle大文件转pdf,excel文件转为pdf
- Java实现计算代码 java计算算式
- 新媒体发展如何,新媒体的新发展