从零开始用Python构建神经网络从零开始用Python构建神经网络
动机:为了更加深入的理解深度学习 , 我们将使用 python 语言从头搭建一个神经网络 , 而不是使用像 Tensorflow 那样的封装好的框架 。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要 。
这篇文章的内容是我的所学 , 希望也能对你有所帮助 。
神经网络是什么?
介绍神经网络的文章大多数都会将它和大脑进行类比 。如果你没有深入研究过大脑与神经网络的类比,那么将神经网络解释为一种将给定输入映射为期望输出的数学关系会更容易理解 。
神经网络包括以下组成部分
? 一个输入层,x
? 任意数量的隐藏层
? 一个输出层 , ?
? 每层之间有一组权值和偏置 , W and b
? 为隐藏层选择一种激活函数 , σ 。在教程中我们使用 Sigmoid 激活函数
下图展示了 2 层神经网络的结构(注意:我们在计算网络层数时通常排除输入层)
2 层神经网络的结构
用 Python 可以很容易的构建神经网络类
训练神经网络
这个网络的输出 ? 为:
【python量化损失函数的简单介绍】你可能会注意到,在上面的等式中,输出 ? 是 W 和 b 函数 。
因此 W 和 b 的值影响预测的准确率. 所以根据输入数据对 W 和 b 调优的过程就被成为训练神经网络 。
每步训练迭代包含以下两个部分:
? 计算预测结果 ?,这一步称为前向传播
? 更新 W 和 b, , 这一步成为反向传播
下面的顺序图展示了这个过程:
前向传播
正如我们在上图中看到的,前向传播只是简单的计算 。对于一个基本的 2 层网络来说,它的输出是这样的:
我们在 NeuralNetwork 类中增加一个计算前向传播的函数 。为了简单起见我们假设偏置 b 为0:
但是我们还需要一个方法来评估预测结果的好坏(即预测值和真实值的误差) 。这就要用到损失函数 。
损失函数
常用的损失函数有很多种,根据模型的需求来选择 。在本教程中,我们使用误差平方和作为损失函数 。
误差平方和是求每个预测值和真实值之间的误差再求和,这个误差是他们的差值求平方以便我们观察误差的绝对值 。
训练的目标是找到一组 W 和 b,使得损失函数最好小,也即预测值和真实值之间的距离最小 。
反向传播
我们已经度量出了预测的误差(损失),现在需要找到一种方法来传播误差,并以此更新权值和偏置 。
为了知道如何适当的调整权值和偏置,我们需要知道损失函数对权值 W 和偏置 b 的导数 。
回想微积分中的概念,函数的导数就是函数的斜率 。
梯度下降法
如果我们已经求出了导数,我们就可以通过增加或减少导数值来更新权值 W 和偏置 b(参考上图) 。这种方式被称为梯度下降法 。
但是我们不能直接计算损失函数对权值和偏置的导数,因为在损失函数的等式中并没有显式的包含他们 。因此,我们需要运用链式求导发在来帮助计算导数 。
链式法则用于计算损失函数对 W 和 b 的导数 。注意,为了简单起见 。我们只展示了假设网络只有 1 层的偏导数 。
这虽然很简陋 , 但是我们依然能得到想要的结果—损失函数对权值 W 的导数(斜率) , 因此我们可以相应的调整权值 。
现在我们将反向传播算法的函数添加到 Python 代码中
为了更深入的理解微积分原理和反向传播中的链式求导法则 , 我强烈推荐 3Blue1Brown 的如下教程:
推荐阅读
- u盘推荐什么牌子,u盘什么牌子好 速度快
- html5元素块元素,html5article元素
- 团体角色扮演游戏,角色扮演游戏活动
- 移植常用命令到linux linux riscv移植
- 监控是什么样子视频,监控是什么样子视频播放器
- 手机版玩赛车的游戏有哪些,手机版玩赛车的游戏有哪些软件
- excle大文件转pdf,excel文件转为pdf
- Java实现计算代码 java计算算式
- 新媒体发展如何,新媒体的新发展