Python拟合复杂函数 python 拟合函数( 二 )


有时候,为了使图片有更好的效果,需要对数据进行一些处理:
leastsq 调用方式如下:
合理的设置 p0 可以减少程序运行时间,因此 , 可以在运行一次程序后 , 用拟合后的相应数据对 p0 进行修正 。
在对波形进行拟合后,调用 pylab 对拟合前后的数据进行可视化:
均方根误差(root mean square error) 是一个很好的评判标准,它是观测值与真值偏差的平方和观测次数n比值的平方根 , 在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感,所以,均方根误差能够很好地反映出测量的精密度 。
RMSE 用程序实现如下:
拟合效果,模型参数输出:
leastsq 函数适用于任何波形的拟合,下面就来介绍一些常用的其他波形:
Python 中的函数拟合很多业务场景中 , 我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势 。(比如用户的留存变化、付费变化等)
本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合 。
通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可 。
运行结果:
对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可 。
运行结果:
python中用polyfit拟合出的函数怎么能直接调用?首先分两种情况:
1.交互窗口处执行:这个时候由于python的强制缩进,因此想要结束函数的定义只需要按两下enter即可 。
2.在.py文件中编写,结束函数只需要不再缩进即可
调用函数方法相同,把函数名及参数写上就可以了,如果有返回值可以
r=functionA(var1)
附:测试代码(python3运行通过)
# -*- coding:utf-8 -*-
#author:zfxcx
def pt():
print("hello")
pt()
【转】指数、幂函数拟合转自: python指数、幂数拟合curve_fit
1、一次二次多项式拟合
一次二次比较简单,直接使用numpy中的函数即可,polyfit(x, y, degree) 。
2、指数幂数拟合curve_fit
使用scipy.optimize 中的curve_fit , 幂数拟合例子如下:
下面是指数拟合例子:
python拟合指数函数初始值如何设定求拟合函数,首先要有因变量和自变量的一组测试或实验数据,根据已知的曲线y=f(x) , 拟合出Ex和En系数 。当用拟合出的函数与实验数据吻合程度愈高,说明拟合得到的Ex和En系数是合理的 。吻合程度用相关系数来衡量,即R^2 。首先,我们需要打开Python的shell工具,在shell当中新建一个对象member,对member进行赋值 。2、这里我们所创建的列表当中的元素均属于字符串类型,同时我们也可以在列表当中创建数字以及混合类型的元素 。3、先来使用append函数对已经创建的列表添加元素 , 具体如下图所示,会自动在列表的最后的位置添加一个元素 。4、再来使用extend对来添加列表元素,如果是添加多个元素,需要使用列表的形式 。5、使用insert函数添加列表元素,insert中有两个参数,第一个参数即为插入的位置 , 第二个参数即为插入的元素 。origin拟合中参数值是程序拟合的结果,自定义函数可以设置参数的初值 , 也可以不设定参数的初值 。
一般而言,拟合结果不会因为初值的不同而有太大的偏差,如果偏差很大 , 说明数据和函数不太匹配,需要对函数进行改正 。X0的迭代初始值选择与求解方程 , 有着密切的关系 。不同的初始值得出的系数是完全不一样的 。这要通过多次选择和比较,才能得到较为合理的初值 。一般的方法,可以通过随机数并根据方程的特性来初选 。

推荐阅读