Python拟合复杂函数 python 拟合函数

Python最小二乘法拟合与作图在函数拟合中,如果用p表示函数中需要确定的参数,那么目标就是找到一组p,使得下面函数S的值最?。?
这种算法称为最小二乘法拟合 。Python的Scipy数值计算库中的optimize模块提供了 leastsq() 函数,可以对数据进行最小二乘拟合计算 。
此处利用该函数对一段弧线使用圆方程进行了拟合,并通过Matplotlib模块进行了作图,程序内容如下:
Python的使用中需要导入相应的模块,此处首先用 import 语句
分别导入了numpy, leastsq与pylab模块,其中numpy模块常用用与数组类型的建立,读入等过程 。leastsq则为最小二乘法拟合函数 。pylab是绘图模块 。
接下来我们需要读入需要进行拟合的数据,这里使用了 numpy.loadtxt() 函数:
其参数有:
进行拟合时,首先我们需要定义一个目标函数 。对于圆的方程,我们需要圆心坐标(a,b)以及半径r三个参数,方便起见用p来存储:
紧接着就可以进行拟合了 ,  leastsq() 函数需要至少提供拟合的函数名与参数的初始值:
返回的结果为一数组,分别为拟合得到的参数与其误差值等,这里只取拟合参数值 。
leastsq() 的参数具体有:
输出选项有:
最后我们可以将原数据与拟合结果一同做成线状图,可采用 pylab.plot() 函数:
pylab.plot() 函数需提供两列数组作为输入,其他参数可调控线条颜色,形状,粗细以及对应名称等性质 。视需求而定,此处不做详解 。
pylab.legend() 函数可以调控图像标签的位置,有无边框等性质 。
pylab.annotate() 函数设置注释 , 需至少提供注释内容与放置位置坐标的参数 。
pylab.show() 函数用于显示图像 。
最终结果如下图所示:
用Python作科学计算
numpy.loadtxt
【Python拟合复杂函数 python 拟合函数】scipy.optimize.leastsq
Python科学计算——任意波形拟合任意波形的生成(geneartion of arbitrary waveform) 在商业,军事等领域都有着重要的应用,诸如空间光通信 (free-space optics communication),高速信号处理 (high-speed signal processing),雷达 (radar) 等 。在任意波形生成后,如何评估生成的任意波形 成为另外一个重要的话题 。
假设有一组实验数据,已知他们之间的函数关系:y=f(x) , 通过这些信息,需要确定函数中的一些参数项 。例如,f 是一个线型函数 f(x)=k*x+b,那么参数 k 和 b 就是需要确定的值 。如果这些参数用 p 表示的话,那么就需要找到一组 p 值使得如下公式中的 S 函数最?。?
这种算法被称之为 最小二乘拟合(least-square fitting) 。scipy 中的子函数库 optimize 已经提供实现最小二乘拟合算法的函数leastsq。下面是 leastsq 函数导入的方式:
scipy.optimize.leastsq 使用方法
在Python科学计算——Numpy.genfromtxt一文中 , 使用numpy.genfromtxt对数字示波器采集的三角波数据导入进行了介绍,今天,就以4GHz三角波波形的拟合为案例介绍任意波形的拟合方法 。
在Python科学计算——如何构建模型?一文中,讨论了如何构建三角波模型 。在标准三角波波形的基础上添加了 横向,纵向的平移和伸缩特征参数,最后添加了 噪声参数 模拟了三角波幅度参差不齐的随机性特征 。但在波形拟合时,并不是所有的特征参数都要纳入考量,例如,噪声参数应是 波形生成系统 的固有特征,正因为它的存在使得产生的波形存在瑕疵,因此,在进行波形拟合并评估时,不应将噪声参数纳入考量 , 最终模型如下:
在调用 scipy.optimize.leastsq 函数时,需要构建误差函数:

推荐阅读