go语言章节 go语言 gin( 二 )


无脑机翻如下:
如果我们有一个map [k] v,其中k和v都不包含指针,并且我们想提高扫描性能,则可以执行以下操作 。
将“ allOverflow [] unsafe.Pointer”添加到 hmap 并将所有溢出存储桶存储在其中 。然后将 bmap 标记为noScan 。这将使扫描非常快,因为我们不会扫描任何用户数据 。
实际上,它将有些复杂,因为我们需要从allOverflow中删除旧的溢出桶 。而且它还会增加 hmap 的大?。?因此也可能需要重新整理数据 。
最终官方在 hmap 中增加了overflow相关字段完成了上面的优化,这是具体的commit地址 。
下面看下具体是如何实现的,源码基于 go1.15,src/cmd/compile/internal/gc/reflect.go 中
通过注释可以看出,如果 map 中保存的键值都不包含指针(通过 Haspointers 判断) , 就使用一个 uintptr 类型代替 bucket 的指针用于溢出桶 overflow 字段,uintptr 类型在 GO 语言中就是个大小可以保存得下指针的整数,不是指针,就相当于实现了 将 bmap 标记为 noScan,GC 的时候就不会遍历完整个 map 了 。随着不断的学习,愈发感慨 GO 语言中很多模块设计得太精妙了 。
差不多说清楚了,能力有限,有不对的地方欢迎留言讨论,源码位置还是问的群里大佬 _
【原创】树莓派3B开发Go语言(四)-自写库实现pwm输出 在前一小节中介绍了点亮第一个LED灯,这里我们准备进阶尝试下,输出第一段PWM波形 。(PWM也就是脉宽调制 , 一种可调占空比的技术,得到的效果就是:如果用示波器测量引脚会发现有方波输出,而且高电平、低电平的时间是可调的 。)
这里爪爪熊准备写成一个golang的库,并开源到github上,后续更新将直接更新到github中,如果你有兴趣可以和我联系 。github.com/dpawsbear/bear_rpi_go
我在很多的教程中都看到说树莓派的PWM(硬件)只有一个GPIO能够输出,就是GPIO1。这可是不小的打击 , 因为我想使用至少四个PWM,还是不死心,想通过硬件手册上找寻蛛丝马迹,看看究竟怎么回事 。
手册上找寻东西稍等下讲述,这里先提供一种方法测试树莓派3B的PWM方法:用指令控制硬件PWM 。
这里通过指令的方式掌握了基本的pwm设置技巧,决定去翻一下手册看看到底PWM怎么回事,这里因为没有BCM2837的手册,根据之前文章引用所说,BCM2835和BCM2837应该是一样的 。这里我们直接翻阅BCM2835的手册,直接找到PWM章节 。找到了如下图:
图中可以看到在博通的命名规则中 GPIO 12、13、18、19、40、41、45、52、53 均可以作为PWM输出 。但是只有两路PWM0 PWM1 。根据我之前所学知识,不出意外应该是PWM0 和 PWM1可以输出不一样的占空比,但是频率应该是一样的 。因为没有示波器,暂时不好测试 。先找到下面对应图:
根据以上两个图对比可以发现如下规律:
对照上面的表可以看出从 BCM2837 中印出来的能够使用在PWM上的就这几个了 。
为了验证个人猜想是否正确,这里先直接使用指令的模式,模拟配置下是否能够正常输出 。
通过上面一系列指令模拟发现,(GPIO1、GPIO26)、(GPIO23、GPIO24)是绑定在一起的,调节任意一个,另外一个也会发生变化 。也即是PWM0、PWM1虽然输出了两路,可以理解成两路其实都是连在一个输出口上 。这里由于没有示波器或者逻辑分析仪这类设备(仅有一个LED灯),所以测试很简陋,下一步是使用示波器这类东西对频率以及信号稳定性进行下测试 。
小节:树莓派具有四路硬件输出PWM能力,但是四路中只能输出两个独立(占空比独立)的PWM , 同时四路输出的频率均是恒定的 。

推荐阅读