一种解决办法是每调用一次 plotly.write 函数就开启一个新的线程,但是这种方法感觉不是很好 。我不想用一个像 cerely(一种分布式任务队列)一样大而全的任务队列框架,因为框架对于我的这点需求来说太重了,并且我的绘图也并不需要 redis 来持久化数据 。
那用什么办法解决呢?我在 python 中写了一个很小的任务队列,它可以在一个单独的线程中调用 plotly.write函数 。下面是程序代码 。
fromthreadingimportThreadimportQueueimporttime classTaskQueue(Queue.Queue):
首先我们继承 Queue.Queue 类 。从 Queue.Queue 类可以继承 get 和 put 方法,以及队列的行为 。
def__init__(self, num_workers=1):Queue.Queue.__init__(self)self.num_workers=num_workersself.start_workers()
初始化的时候 , 我们可以不用考虑工作线程的数量 。
defadd_task(self, task,*args,**kwargs):args=argsor()kwargs=kwargsor{}self.put((task, args, kwargs))
我们把 task, args, kwargs 以元组的形式存储在队列中 。*args 可以传递数量不等的参数,**kwargs 可以传递命名参数 。
defstart_workers(self):foriinrange(self.num_workers):t=Thread(target=self.worker)t.daemon=Truet.start()
我们为每个 worker 创建一个线程,然后在后台删除 。
下面是 worker 函数的代码:
defworker(self):whileTrue:tupl=self.get()item, args, kwargs=self.get()item(*args,**kwargs)self.task_done()
worker 函数获取队列顶端的任务,并根据输入参数运行,除此之外,没有其他的功能 。下面是队列的代码:
我们可以通过下面的代码测试:
defblokkah(*args,**kwargs):time.sleep(5)print“Blokkah mofo!” q=TaskQueue(num_workers=5) foriteminrange(1):q.add_task(blokkah) q.join()# wait for all the tasks to finish. print“Alldone!”
Blokkah 是我们要做的任务名称 。队列已经缓存在内存中 , 并且没有执行很多任务 。下面的步骤是把主队列当做单独的进程来运行 , 这样主程序退出以及执行数据库持久化时,队列任务不会停止运行 。但是这个例子很好地展示了如何从一个很简单的小任务写成像工作队列这样复杂的程序 。
defgradient_descent():# the gradient descent codequeue.add_task(plotly.write, x=X, y=Y)
修改之后,我的梯度下降算法工作效率似乎更高了 。如果梯度下降python函数你很感兴趣的话,可以参考下面的代码 。fromthreadingimportThreadimportQueueimporttime classTaskQueue(Queue.Queue): def__init__(self, num_workers=1):Queue.Queue.__init__(self)self.num_workers=num_workersself.start_workers() defadd_task(self, task,*args,**kwargs):args=argsor()kwargs=kwargsor{}self.put((task, args, kwargs)) defstart_workers(self):foriinrange(self.num_workers):t=Thread(target=self.worker)t.daemon=Truet.start() defworker(self):whileTrue:tupl=self.get()item, args, kwargs=self.get()item(*args,**kwargs)self.task_done() deftests():defblokkah(*args,**kwargs):time.sleep(5)print"Blokkah mofo!" q=TaskQueue(num_workers=5) foriteminrange(10):q.add_task(blokkah) q.join()# block until all tasks are doneprint"All done!" if__name__=="__main__":tests()
梯度下降python函数的介绍就聊到这里吧 , 感谢你花时间阅读本站内容,更多关于梯度下降算法 python代码、梯度下降python函数的信息别忘了在本站进行查找喔 。
推荐阅读
- chatgpt未来失业,未来 失业
- 直播店做什么工作好,直播店做什么工作好呢
- 如何引流外贸客户进店,外贸怎么获客
- 卫视直播话术,电视直播话术
- vb和net比较 vbnet vb区别
- 社群营销如何进行裂变分析,社群裂变营销活动方案
- ppt什么是文本框,ppt的文本框有哪几种
- 视频号挂车带货怎么做流程,视频号挂链接一般都怎么收费
- c语言读取进程函数 c语言如何读取数据