python3里乘法函数 乘法的python语句( 二 )


自定义函数
def list_to_frac(l):
expr = Integer(0)
for i in reversed(l[1:]):
expr += i
expr = 1/expr
return l[0] + expr
list_to_frac([x, y, z])结果为x + 1/z,这个结果是错误的 。
syms = symbols('a0:5') , 定义syms , 得到的结果为(a0, a1, a2, a3, a4) 。
这样也可以a0, a1, a2, a3, a4 = syms,可能是python3里乘法函数我的操作错误。发现python和自动缩进有关 , 所以一定看好自动缩进的距离 。list_to_frac([1, 2, 3, 4])结果为43/30 。
使用cancel可以将生成的分式化简 , frac = cancel(frac)化简为一个分数线的分式 。
(a0*a1*a2*a3*a4 + a0*a1*a2 + a0*a1*a4 + a0*a3*a4 + a0 + a2*a3*a4 + a2 + a4)/(a1*a2*a3*a4 + a1*a2 + a1*a4 + a3*a4 + 1)
a0, a1, a2, a3, a4 = syms定义a0到a4,frac = apart(frac, a0)可将a0提出来 。frac=1/(frac-a0)将a0去掉取倒 。frac = apart(frac, a1)提出a1 。
help("modules"),模块的含义 , help("modules yourstr")模块中包含的字符串的意思 。,
help("topics"),import os.path + help("os.path"),help("list"),help("open")
# -*- coding: UTF-8 -*-声明之后就可以在ide中使用中文注释 。
定义
l = list(symbols('a0:5'))定义列表得到[a0, a1, a2, a3, a4]
fromsympyimport*
x,y,z=symbols('x y z')
init_printing(use_unicode=True)
diff(cos(x),x)求导 。diff(exp(x**2), x) , diff(x**4, x, x, x)和diff(x**4, x, 3)等价 。
diff(expr, x, y, 2, z, 4)求出表达式的y的2阶,z的4阶,x的1阶导数 。和diff(expr, x, y, y, z, 4)等价 。expr.diff(x, y, y, z, 4)一步到位 。deriv = Derivative(expr, x, y, y, z, 4)求偏导 。但是不显示 。之后用deriv.doit()即可显示
integrate(cos(x), x)积分 。定积分integrate(exp(-x), (x, 0, oo))无穷大用2个oo表示 。integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))二重积分 。print(expr)print的使用 。
expr = Integral(log(x)**2, x),expr.doit()积分得到x*log(x)**2 - 2*x*log(x) + 2*x 。
integ.doit()和integ = Integral((x**4 + x**2*exp(x) - x**2 - 2*x*exp(x) - 2*x -
exp(x))*exp(x)/((x - 1)**2*(x + 1)**2*(exp(x) + 1)), x)连用 。
limit(sin(x)/x,x,0),not-a-number表示nan算不出来,limit(expr, x, oo) , ,expr = Limit((cos(x) - 1)/x, x, 0),expr.doit()连用 。左右极限limit(1/x, x, 0, '+'),limit(1/x, x, 0, '-') 。。
Series Expansion级数展开 。expr = exp(sin(x)) , expr.series(x, 0, 4)得到1 + x + x**2/2 + O(x**4),,x*O(1)得到O(x) , ,expr.series(x, 0, 4).removeO()将无穷小移除 。exp(x-6).series(x,x0=6),,得到
-5 + (x - 6)**2/2 + (x - 6)**3/6 + (x - 6)**4/24 + (x - 6)**5/120 + x + O((x - 6)**6, (x, 6))最高到5阶 。
f=Function('f')定义函数变量和h=Symbol('h')和d2fdx2=f(x).diff(x,2)求2阶 , ,as_finite_diff(dfdx)函数和as_finite_diff(d2fdx2,[-3*h,-h,2*h]),,x_list=[-3,1,2]和y_list=symbols('a b c')和apply_finite_diff(1,x_list,y_list,0) 。
Eq(x, y),,solveset(Eq(x**2, 1), x)解出来x,当二式相等 。和solveset(Eq(x**2 - 1, 0), x)等价 。solveset(x**2 - 1, x)
solveset(x**2 - x, x)解,solveset(x - x, x, domain=S.Reals)解出来定义域 。solveset(exp(x), x)# No solution exists解出EmptySet()表示空集 。
等式形式linsolve([x + y + z - 1, x + y + 2*z - 3 ], (x, y, z))和矩阵法linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))得到{(-y - 1, y, 2)}
A*x = b 形式 , M=Matrix(((1,1,1,1),(1,1,2,3))),system=A,b=M[:,:-1],M[:,-1],linsolve(system,x,y,z) , ,solveset(x**3 - 6*x**2 + 9*x, x)解多项式 。roots(x**3 - 6*x**2 + 9*x, x),得出,{3: 2, 0: 1} , 有2个3的重根,1个0根 。solve([x*y - 1, x - 2], x, y)解出坐标 。
f, g = symbols('f g', cls=Function)函数的定义,解微分方程diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))再和dsolve(diffeq,f(x))结合 。得到Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2),dsolve(f(x).diff(x)*(1 - sin(f(x))), f(x))解出来Eq(f(x) + cos(f(x)), C1),,

推荐阅读