python中聚类的函数 python 聚类函数( 四 )


具有均值漂移聚类的聚类数据集散点图
10.OPTICSOPTICS
聚类( OPTICS 短于订购点数以标识聚类结构)是上述 DBSCAN 的修改版本 。
它是通过 OPTICS 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数 。下面列出了完整的示例 。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集 。然后创建一个散点图,并由其指定的群集着色 。在这种情况下,我无法在此数据集上获得合理的结果 。
使用OPTICS聚类确定具有聚类的数据集的散点图
11.光谱聚类
光谱聚类是一类通用的聚类方法,取自线性线性代数 。
它是通过 Spectral 聚类类实现的,而主要的 Spectral 聚类是一个由聚类方法组成的通用类,取自线性线性代数 。要优化的是“ n _ clusters ”超参数,用于指定数据中的估计群集数量 。下面列出了完整的示例 。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集 。然后创建一个散点图,并由其指定的群集着色 。在这种情况下,找到了合理的集群 。
使用光谱聚类聚类识别出具有聚类的数据集的散点图
12.高斯混合模型
高斯混合模型总结了一个多变量概率密度函数 , 顾名思义就是混合了高斯概率分布 。它是通过 Gaussian Mixture 类实现的,要优化的主要配置是“ n _ clusters ”超参数,用于指定数据中估计的群集数量 。下面列出了完整的示例 。
运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集 。然后创建一个散点图,并由其指定的群集着色 。在这种情况下,我们可以看到群集被完美地识别 。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的 。
使用高斯混合聚类识别出具有聚类的数据集的散点图
在本文中,你发现了如何在 python 中安装和使用顶级聚类算法 。具体来说 , 你学到了:
kmeans算法用Python怎么实现1、从Kmeans说起
Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了 。下面说一下如何在matlab中使用kmeans算法 。
创建7个二维的数据点:
复制代码 代码如下:
x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]];
使用kmeans函数:
复制代码 代码如下:
class = kmeans(x, 2);
x是数据点,x的每一行代表一个数据;2指定要有2个中心点,也就是聚类结果要有2个簇 。class将是一个具有70个元素的列向量,这些元素依次对应70个数据点,元素值代表着其对应的数据点所处的分类号 。某次运行后,class的值是:
复制代码 代码如下:
2
2
2
1
1
1
1
这说明x的前三个数据点属于簇2,而后四个数据点属于簇1 。kmeans函数也可以像下面这样使用:
复制代码 代码如下:
[class, C, sumd, D] = kmeans(x, 2)
class =
2
2
2
1
1
1
【python中聚类的函数 python 聚类函数】1
C =
4.06294.0845
-0.13410.1201
sumd =
1.2017
0.2939
D =
34.37270.0184
29.56440.1858
36.35110.0898
0.124737.4801
0.753724.0659
0.197936.7666
0.125636.2149
class依旧代表着每个数据点的分类;C包含最终的中心点,一行代表一个中心点;sumd代表着每个中心点与所属簇内各个数据点的距离之和;D的
每一行也对应一个数据点,行中的数值依次是该数据点与各个中心点之间的距离,Kmeans默认使用的距离是欧几里得距离(参考资料[3])的平方值 。
kmeans函数使用的距离 , 也可以是曼哈顿距离(L1-距离),以及其他类型的距离,可以通过添加参数指定 。

推荐阅读