关于最小二乘估计的计算,涉及更多的数学知识,这里不想详述 , 其一般的过程是用目标函数对各参数求偏导数,并令其等于 0,得到一个线性方程组 。具体推导过程可参考斯坦福机器学习讲义 第 7 页 。def deviations(theta, x, y): return (y - theta[0] - theta[1] * x)theta_best, ier = opt.leastsq(deviations, theta_guess, args=(xdata, ydata))print(theta_best)[-1.01442016 1.93854659]
最小二乘 leastsq 的结果跟 minimize 结果一样 。注意 leastsq 的第一个参数不再是误差平方和 chi2 , 而是误差本身 deviations,即没有平方,也没有和 。yfit = theta_best[0] + theta_best[1] * xfitplt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');plt.plot(xfit, yfit, '-k');
非线性最小二乘
上面是给一些点,拟合一条直线 , 拟合一条曲线也是一样的 。def f(x, beta0, beta1, beta2): # 首先定义一个非线性函数,有 3 个参数 return beta0 + beta1 * np.exp(-beta2 * x**2)beta = (0.25, 0.75, 0.5) # 先猜 3 个 betaxdata = https://www.04ip.com/post/np.linspace(0, 5, 50)y = f(xdata, *beta)ydata = y + 0.05 * np.random.randn(len(xdata)) # 给 y 加噪音def g(beta): return ydata - f(xdata, *beta) # 真实 y 和 预测值的差,求最优曲线时要用到beta_start = (1, 1, 1)beta_opt, beta_cov = opt.leastsq(g, beta_start)print beta_opt # 求到的 3 个最优的 beta 值[ 0.25525709 0.74270226 0.54966466]
拿估计的 beta_opt 值跟真实的 beta = (0.25, 0.75, 0.5) 值比较,差不多 。fig, ax = plt.subplots()ax.scatter(xdata, ydata) # 画点ax.plot(xdata, y, 'r', lw=2) # 真实值的线ax.plot(xdata, f(xdata, *beta_opt), 'b', lw=2) # 拟合的线ax.set_xlim(0, 5)ax.set_xlabel(r"$x$", fontsize=18)ax.set_ylabel(r"$f(x, \beta)$", fontsize=18)fig.tight_layout()
除了使用最小二乘,还可以使用曲线拟合的方法,得到的结果是一样的 。beta_opt, beta_cov = opt.curve_fit(f, xdata, ydata)print beta_opt[ 0.25525709 0.74270226 0.54966466]
有约束的最小化
有约束的最小化是指,要求函数最小化之外,还要满足约束条件,举例说明 。
边界约束def f(X): x, y = X return (x-1)**2 + (y-1)**2 # 这是一个碗状的函数x_opt = opt.minimize(f, (0, 0), method='BFGS').x # 无约束最优化
假设有约束条件,x 和 y 要在一定的范围内,如 x 在 2 到 3 之间,y 在 0 和 2 之间 。bnd_x1, bnd_x2 = (2, 3), (0, 2) # 对自变量的约束x_cons_opt = opt.minimize(f, np.array([0, 0]), method='L-BFGS-B', bounds=[bnd_x1, bnd_x2]).x # bounds 矩形约束fig, ax = plt.subplots(figsize=(6, 4))x_ = y_ = np.linspace(-1, 3, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, f((X,Y)), 50)ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15) # 没有约束下的最小值,蓝色五角星ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15) # 有约束下的最小值,红色星星bound_rect = plt.Rectangle((bnd_x1[0], bnd_x2[0]), bnd_x1[1] - bnd_x1[0], bnd_x2[1] - bnd_x2[0], facecolor="grey")ax.add_patch(bound_rect)ax.set_xlabel(r"$x_1$", fontsize=18)ax.set_ylabel(r"$x_2$", fontsize=18)plt.colorbar(c, ax=ax)fig.tight_layout()
不等式约束
介绍下相关理论 , 先来看下存在等式约束的极值问题求法,比如下面的优化问题 。
目标函数是 f(w),下面是等式约束,通常解法是引入拉格朗日算子,这里使用 ββ 来表示算子,得到拉格朗日公式为
l 是等式约束的个数 。
然后分别对 w 和ββ 求偏导,使得偏导数等于 0 , 然后解出 w 和βiβi , 至于为什么引入拉格朗日算子可以求出极值 , 原因是 f(w) 的 dw 变化方向受其他不等式的约束 , dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w) 的梯度与其他等式梯度的线性组合平行,因此他们之间存在线性关系 。(参考《最优化与KKT条件》)
推荐阅读
- 学html5用什么书比较好,html5哪本书好
- 外卖新人如何做推广的,外卖需要怎么去推广
- ios主屏幕字体怎么换,苹果手机怎样在主屏幕上设置字体
- 营销如何组建团队,组建营销团队方案范文
- p0flinux命令 linux floppy
- 手机视频信息费是什么,手机视频信息费是什么意思
- jquery中局部刷新,javascript局部刷新
- 微信如何开启视频直播权限,微信视频怎么开直播美颜功能
- 包含哪些软件是vb.net的词条