python中闭包函数吗 python中闭包的概念( 二 )


另外再说一点,闭包并不是Python中特有的概念,所有把函数做为一等公民的语言均有闭包的概念 。不过像Java这样以class为一等公民的语言中也可以使用闭包 , 只是它得用类或接口来实现 。
更多概念上的东西可以参考最后的参考链接 。
2. 为什么使用闭包
基于上面的介绍 , 不知道读者有没有感觉这个东西和类有点相似,相似点在于他们都提供了对数据的封装 。不同的是闭包本身就是个方法 。和类一样,我们在编程时经常会把通用的东西抽象成类,(当然,还有对现实世界——业务的建模),以复用通用的功能 。闭包也是一样 , 当我们需要函数粒度的抽象时 , 闭包就是一个很好的选择 。
在这点上闭包可以被理解为一个只读的对象,你可以给他传递一个属性,但它只能提供给你一个执行的接口 。因此在程序中我们经常需要这样的一个函数对象——闭包,来帮我们完成一个通用的功能,比如后面会提到的——装饰器 。
3. 使用闭包
第一种场景,在python中很重要也很常见的一个使用场景就是装饰器,Python为装饰器提供了一个很友好的“语法糖”——@ , 让我们可以很方便的使用装饰器 , 装饰的原理不做过多阐述,简言之你在一个函数func上加上@decorator_func, 就相当于decorator_func(func):
复制代码代码如下:
def decorator_func(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
@decorator_func
def func(name):
print 'my name is', name
# 等价于
decorator_func(func)
在装饰器的这个例子中 , 闭包(wrapper)持有了外部的func这个参数,并且能够接受外部传过来的参数,接受过来的参数在原封不动的传给func,并返回执行结果 。
这是个简单的例子 , 稍微复杂点可以有多个闭包,比如经常使用的那个LRUCache的装饰器,装饰器上可以接受参数@lru_cache(expire=500)这样 。实现起来就是两个闭包的嵌套:
复制代码代码如下:
def lru_cache(expire=5):
# 默认5s超时
def func_wrapper(func):
def inner(*args, **kwargs):
# cache 处理 bala bala bala
return func(*args, **kwargs)
return inner
return func_wrapper
@lru_cache(expire=10*60)
def get(request, pk)
# 省略具体代码
return response()
不太懂闭包的同学一定得能够理解上述代码,这是我们之前面试经常会问到的面试题 。
第二个场景,就是基于闭包的一个特性——“惰性求值” 。这个应用比较常见的是在数据库访问的时候,比如说:
复制代码代码如下:
# 伪代码示意
class QuerySet(object):
def __init__(self, sql):
self.sql = sql
self.db = Mysql.connect().corsor()# 伪代码
def __call__(self):
return db.execute(self.sql)
def query(sql):
return QuerySet(sql)
result = query("select name from user_app")
if timenow:
print result# 这时才执行数据库访问
上面这个不太恰当的例子展示了通过闭包完成惰性求值的功能 , 但是上面query返回的结果并不是函数,而是具有函数功能的类 。有兴趣的可以去看看Django的queryset的实现,原理类似 。
第三种场景,需要对某个函数的参数提前赋值的情况 , 当然在Python中已经有了很好的解决访问 functools.parial,但是用闭包也能实现 。
复制代码代码如下:
def partial(**outer_kwargs):
def wrapper(func):
def inner(*args, **kwargs):
for k, v in outer_kwargs.items():
kwargs[k] = v
return func(*args, **kwargs)

推荐阅读