mysql字符串转换成字典mysql字符串转换成字典可以用php数据表转换成数据字典的程序 。网上找到别人写好的php数据表转换成数据字典的程序export2.php,修改export2.php中连接数据库的信息(数据库IP、数据库名称、访问数据库的账号密码 。
PHP的算法可以实现大数据分析吗1.Bloom filter
适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集
基本原理及要点:
对于原理来说很简单 , 位数组+k个独立hash函数 。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在 , 很明显这个过程并不保证查找的结果是100%正确的 。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字 。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了 。
还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数 。当hash函数个数k=(ln2)*(m/n)时错误率最小 。在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合 。但m还应该更大些,因为还要保证bit数组里至少一半为 0,则m 应该=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数) 。
举个例子我们假设错误率为0.01,则此时m应大概是n的13倍 。这样k大概是8个 。
注意这里m与n的单位不同,m是bit为单位 , 而n则是以元素个数为单位(准确的说是不同元素的个数) 。通常单个元素的长度都是有很多bit的 。所以使用bloom filter内存上通常都是节省的 。
扩展:
Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中 。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作 。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联 。SBF采用counter中的最小值来近似表示元素的出现频率 。
问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G , 让你找出A,B文件共同的URL 。如果是三个乃至n个文件呢?
根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个 bit 。现在可用的是340亿,相差并不多 , 这样可能会使出错率上升些 。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了 。
2.Hashing
适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存
基本原理及要点:
hash函数选择,针对字符串,整数,排列,具体相应的hash方法 。
碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing 。()
扩展:
d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing 。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数 , h1和h2 。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key] 。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置 。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来 。在查找一个key时,必须进行两次hash,同时查找两个位置 。
问题实例:
1).海量日志数据,提取出某日访问百度次数最多的那个IP 。
推荐阅读
- 如何统计跨境电商,如何统计跨境电商销售数据
- 怎么让手机显卡报废,怎么让一个手机报废
- 李佳琦如何引流的的简单介绍
- 虚拟主机规避风险,架设虚拟主机
- 写java代码用语句测试 java测试类代码
- 电脑有2个显卡怎么选着,电脑怎么换显卡
- 国外服务器1005无标题,国外服务器1005无标题怎么设置
- 电商产品如何迭代,产品迭代计划怎么做
- excel怎么文字换行,excel中如何使文字换行