go语言分割字符串 go字符串处理( 六 )


可见这不是我们想要的效果,根据utf-8中文编码规则,我们要str[3]str[4]str[5]三个字节合起来组成“北”字及 str[6]str[7]str[8]合起来组成“京”字 。由此引出下面第二种遍历方法 。
该方式是按照字符遍历的,所以不会出现乱码,如下:
运行结果:
从图中可以看到第二个汉子“京”的开始下标是6,直接跳过了4和5,可见确实依照utf8编码方式将三个字节组合成了一个汉字,str[3]-str[5]组合成“北”字,str[6]-str[8]组合成了“京”字 。
由于下标的不确定性 , 所以引出了下面的遍历方式 。
1 可以先将字符串转成 []rune 切片
2 再用常规方法进行遍历
运行效果:
由此可见下标是按1递增的,没有产生跳跃现象 。
go语言string之Buffer与Builder操作字符串离不开字符串的拼接,但是Go中string是只读类型,大量字符串的拼接会造成性能问题 。
拼接字符串 , 无外乎四种方式,采用“+”,“fmt.Sprintf()”,"bytes.Buffer","strings.Builder"
上面我们创建10万字符串拼接的测试,可以发现"bytes.Buffer","strings.Builder"的性能最好,约是“+”的1000倍级别 。
这是由于string是不可修改的,所以在使用“+”进行拼接字符串,每次都会产生申请空间,拼接,复制等操作,数据量大的情况下非常消耗资源和性能 。而采用Buffer等方式,都是预先计算拼接字符串数组的总长度(如果可以知道长度),申请空间,底层是slice数组,可以以append的形式向后进行追加 。最后在转换为字符串 。这申请了不断申请空间的操作 , 也减少了空间的使用和拷贝的次数 , 自然性能也高不少 。
bytes.buffer是一个缓冲byte类型的缓冲器存放着都是byte
是一个变长的 buffer,具有 Read 和Write 方法 。Buffer 的 零值 是一个 空的 buffer , 但是可以使用,底层就是一个 []byte ,  字节切片 。
向Buffer中写数据,可以看出Buffer中有个Grow函数用于对切片进行扩容 。
从Buffer中读取数据
strings.Builder的方法和bytes.Buffer的方法的命名几乎一致 。
但实现并不一致,Builder的Write方法直接将字符拼接slice数组后 。
其没有提供read方法,但提供了strings.Reader方式
Reader 结构:
Buffer:
Builder:
可以看出Buffer和Builder底层都是采用[]byte数组进行装载数据 。
先来说说Buffer:
创建好Buffer是一个empty的,off 用于指向读写的尾部 。
在写的时候,先判断当前写入字符串长度是否大于Buffer的容量,如果大于就调用grow进行扩容,扩容申请的长度为当前写入字符串的长度 。如果当前写入字符串长度小于最小字节长度64 , 直接创建64长度的[]byte数组 。如果申请的长度小于二分之一总容量减去当前字符总长度,说明存在很大一部分被使用但已读,可以将未读的数据滑动到数组头 。如果容量不足,扩展2*c + n。
其String()方法就是将字节数组强转为string
Builder是如何实现的 。
Builder采用append的方式向字节数组后添加字符串 。
从上面可以看出,[]byte的内存大小也是以倍数进行申请的,初始大小为 0,第一次为大于当前申请的最大 2 的指数,不够进行翻倍.
可以看出如果旧容量小于1024进行翻倍,否则扩展四分之一 。(2048 byte 后,申请策略的调整) 。
其次String()方法与Buffer的string方法也有明显区别 。Buffer的string是一种强转,我们知道在强转的时候是需要进行申请空间,并拷贝的 。而Builder只是指针的转换 。
这里我们解析一下 *(*string)(unsafe.Pointer(b.buf)) 这个语句的意思 。

推荐阅读