这种算法被称之为 最小二乘拟合(least-square fitting) 。scipy 中的子函数库 optimize 已经提供实现最小二乘拟合算法的函数leastsq。下面是 leastsq 函数导入的方式:
scipy.optimize.leastsq 使用方法
在Python科学计算——Numpy.genfromtxt一文中,使用numpy.genfromtxt对数字示波器采集的三角波数据导入进行了介绍,今天,就以4GHz三角波波形的拟合为案例介绍任意波形的拟合方法 。
在Python科学计算——如何构建模型?一文中 , 讨论了如何构建三角波模型 。在标准三角波波形的基础上添加了 横向,纵向的平移和伸缩特征参数,最后添加了 噪声参数 模拟了三角波幅度参差不齐的随机性特征 。但在波形拟合时 , 并不是所有的特征参数都要纳入考量,例如 , 噪声参数应是 波形生成系统 的固有特征,正因为它的存在使得产生的波形存在瑕疵,因此 , 在进行波形拟合并评估时 , 不应将噪声参数纳入考量,最终模型如下:
在调用 scipy.optimize.leastsq 函数时,需要构建误差函数:
有时候,为了使图片有更好的效果 , 需要对数据进行一些处理:
leastsq 调用方式如下:
合理的设置 p0 可以减少程序运行时间,因此,可以在运行一次程序后,用拟合后的相应数据对 p0 进行修正 。
在对波形进行拟合后,调用 pylab 对拟合前后的数据进行可视化:
均方根误差(root mean square error) 是一个很好的评判标准 , 它是观测值与真值偏差的平方和观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感,所以,均方根误差能够很好地反映出测量的精密度 。
RMSE 用程序实现如下:
拟合效果,模型参数输出:
leastsq 函数适用于任何波形的拟合,下面就来介绍一些常用的其他波形:
关于python函数拟合误差和python拟合曲线误差分析的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息 , 记得收藏关注本站 。
推荐阅读
- 怎么样把电脑上的文件考到u盘上,怎么样将电脑里文件考到优盘里
- html5中如何让表格居下方的简单介绍
- 像仙剑的单机游戏,类似仙剑的单机电脑游戏
- 怎么查公众号粉丝排行,如何查公众号粉丝数
- mysql弱口令怎么解决 mysql 弱口令扫描原理
- flutter几种线程,flutter sms
- 棋牌游戏用什么软件打开的简单介绍
- 视频号直播怎么贴纸,视频号直播贴图
- vb.net图形按钮 vb怎么画命令按钮