mysql表怎么水平拆分 mysql大表拆分( 二 )


水平分库分表
将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同 。水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈 。
水平分库分表切分规则
1. RANGE
从0到10000一个表,10001到20000一个表mysql表怎么水平拆分;
2. HASH取模
一个商场系统 , 一般都是将用户,订单作为主表,然后将和它们相关的作为附表 , 这样不会造成跨库事务之类的问题 。取用户id , 然后hash取模,分配到不同的数据库上 。
3. 地理区域
比如按照华东 , 华南,华北这样来区分业务,七牛云应该就是如此 。
4. 时间
按照时间切分,就是将6个月前 , 甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离” 。
分库分表后面临的问题
事务支持
分库分表后,就成了分布式事务了 。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担 。
跨库join
只要是进行切分,跨节点Join的问题是不可避免的 。但是良好的设计和切分却可以减少此类情况的发生 。解决这一问题的普遍做法是分两次查询实现 。在第一次查询的结果集中找出关联数据的id,根据这些id发起第二次请求得到关联数据 。
跨节点的count,order by,group by以及聚合函数问题
这些是一类问题,因为它们都需要基于全部数据集合进行计算 。多数的代理都不会自动处理合并工作 。解决方案mysql表怎么水平拆分:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并 。和join不同的是每个结点的查询可以并行执行,因此很多时候它的速度要比单一大表快很多 。但如果结果集很大,对应用程序内存的消耗是一个问题 。
数据迁移,容量规划,扩容等问题
来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制 。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点 , 这也从一个侧面反映出了Sharding扩容的难度 。
ID问题
一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制 。一方面,某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面,应用程序在插入数据之前需要先获得ID,以便进行SQL路由.
一些常见的主键生成策略
UUID
使用UUID作主键是最简单的方案 , 但是缺点也是非常明显的 。由于UUID非常的长,除占用大量存储空间外,最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题 。
Twitter的分布式自增ID算法Snowflake
在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的 , 除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位 。
跨分片的排序分页
一般来讲 , 分页时需要按照指定字段进行排序 。当排序字段就是分片字段的时候 , 我们通过分片规则可以比较容易定位到指定的分片 , 而当排序字段非分片字段的时候,情况就会变得比较复杂了 。为了最终结果的准确性 , 我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序,最后再返回给用户 。

推荐阅读