python画隶属度函数 求隶属度函数

不能直接写出函数的表达式 怎么在python里画函数图象呢?不写出y=f(x)这样的表达式,由隐函数的等式直接绘制图像,以x2+y2+xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有 , python的sympy工具箱的等式不是a==b , 而是a-b或者Eq(a,b),这几点和matlab的区别很大)
直接在命令提示行的里面运行代码的效果
from sympy import *;
【python画隶属度函数 求隶属度函数】x,y=symbols('x y');
plotting.plot_implicit(x**2+y**2+x*y-1);
Python如何画cos和sin的图?。?/h2>在python自带编辑器IDLE中,新建脚本如作图.py
导入需要的模块
import numpy as np
import scipy as sp
import pylab as pl
2
输入代码
x=np.linspace(0,4*np.pi,100)
pl.plot(x,pl.sin(x))
pl.show()
3
执行代码,按F5 , 可直接显示图片
4
几点说明:
1. 方法linspace(0,4*np.pi,100)表示从0开始,到4*pi结束,生成100个点
2. 方法plot为画图函数,相当于plot(x,y),x为横坐标,y为纵坐标
3.show()为展示出来
希望采纳?。?
python函数图的绘制pre
importnumpy as np
import matplotlib.pyplot as plt
frommatplotlib.patches import Polygon
def func(x):
return-(x-2)*(x-8)+40
x=np.linspace(0,10)
y=func(x)
fig,ax = plt.subplots()
plt.plot(x,y,'r',linewidth=2)
plt.ylim(ymin=20)
a=2
b=9
ax.set_xticks([a,b])
ax.set_xticklabels(['$a$','$b$'])
ax.set_yticks([])
plt.figtext(0.9,0.05,'$x$')
plt.figtext(0.1,0.9,'$y$')
ix=np.linspace(a,b)
iy=func(ix)
ixy=zip(ix,iy)
verts=[(a,0)]+list(ixy)+[(b,0)]
poly = Polygon(verts,facecolor='0.9',edgecolor='0.5')
ax.add_patch(poly)
x_math=(a+b)*0.5
y_math=35
plt.text(x_math,y_math,r"$\int_a^b(-(x-2)*(x-8)+40)dx$",horizontalalignment='center',size=12)
plt.show()
/pre
python画hist直方图 简单说下图形选择啦python画隶属度函数,通常python画隶属度函数我们最常用的图形是折线图、扇形图、条形图 , 它们的功能简单概括为:
折线图:表示变化情况;
扇形图:表示各类别的分布占比情况;
条形图:表示具体数值;
接下来要说的直方图是以条形图的形式展现的 , 在统计学中 , 直方图(英语:Histogram)是一种对数据分布情况的图形表示 。
以下展示了python画直方图的几种方式,这里涉及到了3个包:matplotlib、pandas、seanborn 。
1、使用 matplotlib.pyplot.hist 函数(本文主要讲解该方法画直方图)
2、使用 pandas.DataFrame.plot.hist 函数
3、使用 pandas.DataFrame.hist 函数
4、使用 seaborn.distplot 函数
以下为 matplotlib.pyplot.hist 函数介绍:
参数:
返回值:
模拟真实场景:我们通过分析打分 , 给1000个客户进行了排名,排名越靠前,说明客户越优异,为了找到特定的200个客户的排名处于这1000个客户中的位置,使用了直方图对比的方式 。以下使用的数据是为模拟场景,随机出来的结果排名比较靠后,所以这些客户质量并不高:
hist:
matplotlib中文乱码:
关于python画隶属度函数和求隶属度函数的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息 , 记得收藏关注本站 。

    推荐阅读