python分组函数 python 分组

python groupby忽略每组前几个python中groupby函数主要的作用是进行数据的分组以及分组后地组内运算!
对于数据的分组和分组运算主要是指groupby函数的应用,具体函数的规则如下:
df[](指输出数据的结果属性名称).groupby([df[属性],df[属性])(指分类的属性,数据的限定语,可以有多个).mean()(对于数据的计算方式——函数名称)
另外,我们也可以过滤掉和忽略掉你不想要的组,而是返回一个类似索引对象 。在这个对象中,我们分组时需要设置一个过滤条件,那么没有通过的分组的元素被NaN 填充,这样分组后被NaN 填充的数据就可以忽略了 。
python--pandas分组聚合groupby 方法是pandas中的分组方法,对数据框采用 groupby 方法后 , 返回的是 DataFrameGroupBy 对象,一般分组操作后会进行聚合操作 。
对数据框按 A 列进行分组,产生分组数据框 。分组数据框是可迭代对象,可以进行循环遍历,可以看出在循环中,每个元素的类型是元组,
元组的第一个元素是分组值,第二个元素是对应的分组数据框 。
可以对分组后的数据框直接使用聚合方法 agg ,对分组数据框的每一列计算统计函数值 。
可以根据数据框外的序列数据对数据框进行分组,需要注意 序列长度需要与数据框行数相同。
可以根据数据框的多列对数据框进行分组 。
根据 A , B 列进行分组,然后求和 。
可以根据索引对数据框进行分组 , 需要设置 level 参数 。
数据框只有一层索引,设置参数 level=0。
当数据框索引有多层时,也可以根据需求设置 level 参数,完成分组聚合 。
设置 level 参数 , 如需要根据第一层索引,即 id1 进行分组,可以设置 level=0 或 level='id1' 完成分组聚合 。
分组后一般会进行聚合操作,用 agg 方法进行聚合 。
对分组后数据框使用单个函数进行聚合,单个聚合函数会对每列进行计算 , 然后合并返回 。聚合函数以字符串的形式传入 。
可以对分组后的数据指定列进行分组聚合 。需要注意 子列需要用[]包裹。
聚合函数也可以传入自定义的匿名函数 。
聚合函数可以是多个函数 。聚合时,多个聚合函数会对每列进行计算,然后合并返回 。聚合函数以列表的形式传入 。
聚合返回后的数据列名有两层索引 , 第一层是聚合的列名,第二层是使用的聚合函数名 。如果需要对返回的聚合函数名重命名 ,
需要在传参时,传入元组,第一个元素为聚合函数名,第二个元素为聚合函数 。
同样,也可以传入匿名函数 。
如果需要对不同的列进行不同的聚合计算,则需要传入字典的形式 。
可以重命名聚合后的列名,注意 只能对一列传入一个聚合函数时有效。
Python分组【python分组函数 python 分组】前言分组原理
核心:
1.不论分组键是数组、列表、字典、Series、函数,只要其与待分组变量的轴长度一致都可以传入groupby进行分组 。
2.默认axis=0按行分组 , 可指定axis=1对列分组 。
对数据进行分组操作的过程可以概括为:split-apply-combine三步:
1.按照键值(key)或者分组变量将数据分组 。
2.对于每组应用我们的函数,这一步非常灵活,可以是python自带函数,可以是我们自己编写的函数 。
3.将函数计算后的结果聚合 。
1 分组模式及其对象
1.1 分组的一般模式
三个要素:分组依据、数据来源、操作及其返回结果
df.groupby(分组依据)[数据来源].使用操作
1.2 分组依据的本质
1.3Groupby 对象
通过 ngroups 属性,可以访问分为了多少组:
通过 groups 属性,可以返回从 组名映射到 组索引列表的字典:
当 size 作为 DataFrame 的属性时,返回的是表长乘以表宽的大小,但在 groupby 对象上表示统计每个组的 元素个数:
通过 get_group 方法可以直接获取所在组对应的行,此时必须知道组的具体名字:
1.4 分组的三大操作
分组的三大操作:聚合、变换和过滤
2.聚合函数
2.1内置聚合函数
包括如下函数: max/min/mean/median/count/all/any/idxmax/idxmin/mad/nunique/skew/quantile/sum/std/var/sem/size/prod
2.2agg 方法
【a】使用多个函数
当使用多个聚合函数时,需要用列表的形式把内置聚合函数的对应的字符串传入,先前提到的所有字符串都是合法的 。
【b】对特定的列使用特定的聚合函数
对于方法和列的特殊对应,可以通过构造字典传入 agg 中实现,其中字典以列名为键 , 以聚合字符串或字符串列表为值 。
【c】使用自定义函数
在 agg 中可以使用具体的自定义函数 , 需要注意传入函数的参数是之前数据源中的列,逐列进行计算
【d】聚合结果重命名 如果想要对结果进行重命名,只需要将上述函数的位置改写成元组,元组的第一个元素为新的名字,第二个位置为原来的函数 , 包括聚合字符串和自定义函数
3 变换和过滤
3.1 变换函数与 transform 方法
变 换 函 数 的 返 回 值 为 同 长 度 的 序 列, 最 常 用 的 内 置 变 换 函 数 是 累 计 函 数:cum- count/cumsum/cumprod/cummax/cummin ,它们的使用方式和聚合函数类似,只不过完成的是组内 累计操作 。
3.2 组索引与过滤
过滤在分组中是对于组的过滤 , 而索引是对于行的过滤
组过滤作为行过滤的推广,指的是如果对一个组的全体所在行进行统计的结果返回 True 则会被保留,False 则该组会被过滤,最后把所有未被过滤的组其对应的所在行拼接起来作为 DataFrame 返回 。
在 groupby 对象中,定义了 filter 方法进行组的筛选 , 其中自定义函数的输入参数为数据源构成的 DataFrame 本身,在之前例子中定义的 groupby 对象中,传入的就是 df[['Height', 'Weight']] , 因此所有表方法和属性 都可以在自定义函数中相应地使用,同时只需保证自定义函数的返回为布尔值即可 。
4 跨列分组
4.1 apply 的引入
4.2 apply 的使用
在设计上,apply 的自定义函数传入参数与 filter 完全一致,只不过后者只允许返回布尔值
【a】标量情况:结果得到的是 Series , 索引与 agg 的结果一致
【b】Series 情况:得到的是 DataFrame,行索引与标量情况一致,列索引为 Series 的索引
【c】DataFrame 情况:得到的是 DataFrame ,行索引最内层在每个组原先 agg 的结果索引上,再加一层返 回的 DataFrame 行索引,同时分组结果 DataFrame 的列索引和返回的 DataFrame 列索引一致
python分组函数的介绍就聊到这里吧,感谢你花时间阅读本站内容 , 更多关于python 分组、python分组函数的信息别忘了在本站进行查找喔 。

    推荐阅读