python简单函数 python函数详解

python常用函数1、complex()
返回一个形如 a bj 的复数,传入参数分为三种情况:
参数为空时,返回0j;参数为字符串时,将字符串表达式解释为复数形式并返回;参数为两个整数(a,b)时,返回 a bj;参数只有一个整数 a 时,虚部 b 默认为0 , 函数返回 a 0j 。
2、dir()
不提供参数时,返回当前本地范围内的名称列表;提供一个参数时,返回该对象包含的全部属性 。
3、divmod(a,b)
a -- 代表被除数 , 整数或浮点数;b -- 代表除数,整数或浮点数;根据 除法运算 计算 a,b 之间的商和余数,函数返回一个元组(p,q) ,p 代表商 a//b,q 代表余数 a%b 。
4、enumerate(iterable,start=0)
iterable -- 一个可迭代对象,列表、元组序列等;start -- 计数索引值,默认初始为0‘该函数返回枚举对象是个迭代器 , 利用 next() 方法依次返回元素值,每个元素以元组形式存在,包含一个计数元素(起始为 start )和 iterable 中对应的元素值 。
Python基础之常见内建函数map() 函数接受两个参数,一个是函数,一个是可迭代对象(Iterable), map 将传入的函数依次作用到可迭代对象的每一个元素,并把结果作为迭代器(Iterator)返回 。
举例说明 , 有一个函数 f(x)=x^2 , 要把这个函数作用到一个list [1,2,3,4,5,6,7,8,9] 上:
运用简单的循环可以实现:
运用高阶函数 map() :
结果 r 是一个迭代器,迭代器是惰性序列,通过 list() 函数让它把整个序列都计算出来并返回一个 list。
【python简单函数 python函数详解】如果要把这个list所有数字转为字符串利用 map() 就简单了:
小练习:利用 map() 函数 , 把用户输入的不规范的英文名字变为首字母大写其他小写的规范名字 。输入 ['adam', 'LISA', 'barT'] ,输出 ['Adam', 'Lisa', 'Bart']
reduce() 函数也是接受两个参数,一个是函数,一个是可迭代对象,reduce 将传入的函数作用到可迭代对象的每个元素的结果做累计计算 。然后将最终结果返回 。
效果就是: reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
举例说明,将序列 [1,2,3,4,5] 变换成整数 12345 :
小练习:编写一个 prod() 函数,可以接受一个 list 并利用 reduce 求积:
map() 和 reduce() 综合练习:编写 str2float 函数,把字符串 '123.456' 转换成浮点型 123.456
filter() 函数用于过滤序列, filter() 也接受一个函数和一个序列, filter() 把传入的函数依次作用于每个元素 , 然后根据返回值是 True 还是 False 决定保留还是丢弃该元素 。
举例说明,删除list中的偶数:
小练习:用 filter() 求素数
定义一个筛选函数:
定义一个生成器不断返回下一个素数:
打印100以内素数:
python内置的 sorted() 函数可以对list进行排序:
sorted() 函数也是一个高阶函数,还可以接受一个 key 函数来实现自定义排序:
key 指定的函数将作用于list的每一个元素上,并根据 key 函数返回的结果进行排序.
默认情况下 , 对字符串排序 , 是按照ASCII的大小比较的 , 由于'Z''a',结果,大写字母Z会排在小写字母a的前面 。如果想忽略大小写可都转换成小写来比较:
要进行反向排序,不必改动key函数,可以传入第三个参数 reverse=True :
小练习:假设我们用一组tuple表示学生名字和成绩: L = [('Bob', 75), ('Adam', 92), ('Bart', 66), ('Lisa', 88)]。用sorted()对上述列表分别按c成绩从高到低排序:
运用匿名函数更简洁:
Python的函数都有哪些【常见的内置函数】
1、enumerate(iterable,start=0)
是python的内置函数 , 是枚举、列举的意思 , 对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串) , enumerate将其组成一个索引序列,利用它可以同时获得索引和值 。
2、zip(*iterables,strict=False)
用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表 。如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用*号操作符,可以将元组解压为列表 。
3、filter(function,iterable)
filter是将一个序列进行过滤,返回迭代器的对象,去除不满足条件的序列 。
4、isinstance(object,classinfo)
是用来判断某一个变量或者是对象是不是属于某种类型的一个函数,如果参数object是classinfo的实例,或者object是classinfo类的子类的一个实例,
返回True 。如果object不是一个给定类型的的对象,则返回结果总是False
5、eval(expression[,globals[,locals]])
用来将字符串str当成有效的表达式来求值并返回计算结果,表达式解析参数expression并作为Python表达式进行求值(从技术上说是一个条件列表),采用globals和locals字典作为全局和局部命名空间 。
【常用的句式】
1、format字符串格式化
format把字符串当成一个模板,通过传入的参数进行格式化,非常实用且强大 。
2、连接字符串
常使用 连接两个字符串 。
3、if...else条件语句
Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块 。其中if...else语句用来执行需要判断的情形 。
4、for...in、while循环语句
循环语句就是遍历一个序列,循环去执行某个操作,Python中的循环语句有for和while 。
5、import导入其他脚本的功能
有时需要使用另一个python文件中的脚本,这其实很简单,就像使用import关键字导入任何模块一样 。
Python中冷门但非常好用的内置函数Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性
Counter
collections在python官方文档中的解释是High-performance container datatypes,直接的中文翻译解释高性能容量数据类型 。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择 。在python3.10.1中它总共包含以下几种数据类型:
容器名简介
namedtuple() 创建命名元组子类的工厂函数
deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)
ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面
Counter 字典的子类,提供了可哈希对象的计数功能
OrderedDict 字典的子类,保存了他们被添加的顺序
defaultdict 字典的子类 , 提供了一个工厂函数,为字典查询提供一个默认值
UserDict 封装了字典对象 , 简化了字典子类化
UserList 封装了列表对象,简化了列表子类化
UserString 封装了字符串对象,简化了字符串子类化
其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读 。Counter类继承dict类 , 所以它能使用dict类里面的方法
举例
#统计词频
fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']
result = {}
for fruit in fruits:
if not result.get(fruit):
result[fruit] = 1
else:
result[fruit]= 1
print(result)
#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:
from collections import Counter
fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']
c = Counter(fruits)
print(dict(c))
#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了 , 也更容易阅读和维护了 。
elements()
返回一个迭代器,其中每个元素将重复出现计数值所指定次 。元素会按首次出现的顺序返回 。如果一个元素的计数值小于1,elements()将会忽略它 。
c = Counter(a=4, b=2, c=0, d=-2)
sorted(c.elements())
['a', 'a', 'a', 'a', 'b', 'b']most_common([n])
返回一个列表 , 其中包含n个最常见的元素及出现次数,按常见程度由高到低排序 。如果n被省略或为None,most_common()将返回计数器中的所有元素 。计数值相等的元素按首次出现的顺序排序:
Counter('abracadabra').most_common(3)
[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法 , 其他方法可以参考 python3.10.1官方文档
实战
Leetcode 1002.查找共用字符
给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回 。你可以按任意顺序返回答案 。
输入:words = ["bella", "label", "roller"]
输出:["e", "l", "l"]
输入:words = ["cool", "lock", "cook"]
输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决 。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数
class Solution:
def commonChars(self, words: List[str]) - List[str]:
from collections import Counter
ans = Counter(words[0])
for i in words[1:]:
ans = Counter(i)
return list(ans.elements())提交一下,发现83个测试用例耗时48ms,速度还是不错的
sorted
在处理数据过程中,我们经常会用到排序操作 , 比如将列表、字典、元组里面的元素正/倒排序 。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序 , 并返回列表
对列表升序操作:
a = sorted([2, 4, 3, 7, 1, 9])
print(a)
# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:
sorted((4,1,9,6),reverse=True)
print(a)
# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:
fruits = ['apple', 'watermelon', 'pear', 'banana']
a = sorted(fruits, key = lambda x : len(x))
print(a)
# 输出:['pear', 'apple', 'banana', 'watermelon']all
all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE , 如果是返回 True,否则返回 False 。元素除了是 0、空、None、False外都算True 。注意:空元组、空列表返回值为True 。
all(['a', 'b', 'c', 'd']) # 列表list , 元素都不为空或0
True
all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素
False
all([0, 1,2, 3]) # 列表list,存在一个为0的元素
False
all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0
True
all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素
False
all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素
False
all([]) # 空列表
True
all(()) # 空元组
Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0 , False 。如果全为空,0,False,则返回False;如果不全为空,则返回True 。
F-strings
在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings , F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:
s1='Hello'
s2='World'
print(f'{s1} {s2}!')
# Hello World!在F-strings中我们也可以执行函数:
def power(x):
return x*x
x=4
print(f'{x} * {x} = {power(x)}')
# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多 , 书写起来也更加简单 。
本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~
关于python简单函数和python函数详解的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息 , 记得收藏关注本站 。

    推荐阅读