python求协方差函数 python 协方差

Python基础 numpy中的常见函数有哪些有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家 。
Numpy是Python的一个科学计算的库 , 提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用 。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数 。
数组常用函数
1.where()按条件返回数组的索引值
2.take(a,index)从数组a中按照索引index取值
3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组 , 元素个数为N个
4.a.fill()将数组的所有元素以指定的值填充
5.diff(a)返回数组a相邻元素的差值构成的数组
6.sign(a)返回数组a的每个元素的正负符号
7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引
改变数组维度
a.ravel(),a.flatten():将数组a展平成一维数组
a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组
a.transpose,a.T转置数组a
数组组合
1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合
2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合
3.row_stack((a,b))将数组a,b按行方向组合
4.column_stack((a,b))将数组a,b按列方向组合
数组分割
1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组
2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组
数组修剪和压缩
1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m
2.a.compress()返回根据给定条件筛选后的数组
数组属性
1.a.dtype数组a的数据类型
2.a.shape数组a的维度
3.a.ndim数组a的维数
4.a.size数组a所含元素的总个数
5.a.itemsize数组a的元素在内存中所占的字节数
6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型
数组计算
1.average(a,weights=v)对数组a以权重v进行加权平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差
3.a.prod()数组a的所有元素的乘积
4.a.cumprod()数组a的元素的累积乘积
5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数
6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和
以上就是numpy中的常见函数 。更多Python学习推荐:PyThon学习网教学中心 。
怎么用python表示出二维高斯分布函数,mu表示均值,sigma表示协方差矩阵,x表示数据点clear
close all
%%%%%%%%%%%%%%%%%%%%%%%%%生成实验数据集
rand('state',0)
sigma_matrix1=eye(2);
sigma_matrix2=50*eye(2);
u1=[0,0];
u2=[30,30];
m1=100;
m2=300;%样本数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm1数据集
Y1=multivrandn(u1,m1,sigma_matrix1);
Y2=multivrandn(u2,m2,sigma_matrix2);
scatter(Y1(:,1),Y1(:,2),'bo')
hold on
scatter(Y2(:,1),Y2(:,2),'r*')
title('SM1数据集')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm2数据集
u11=[0,0];
u22=[5,5];
u33=[10,10];
u44=[15,15];
m=600;
sigma_matrix3=2*eye(2);
Y11=multivrandn(u11,m,sigma_matrix3);
Y22=multivrandn(u22,m,sigma_matrix3);
Y33=multivrandn(u33,m,sigma_matrix3);
Y44=multivrandn(u44,m,sigma_matrix3);
figure(2)
scatter(Y11(:,1),Y11(:,2),'bo')
hold on
scatter(Y22(:,1),Y22(:,2),'r*')
scatter(Y33(:,1),Y33(:,2),'go')
scatter(Y44(:,1),Y44(:,2),'c*')
title('SM2数据集')
end
function Y = multivrandn(u,m,sigma_matrix)
%%生成指定均值和协方差矩阵的高斯数据
n=length(u);
c = chol(sigma_matrix);
X=randn(m,n);
Y=X*c ones(m,1)*u;
end
在Python库中的static模块用什么函数可以求数据的样本方差在Python库中的`statistics`模块中python求协方差函数,可以使用`variance()`函数来计算数据的样本方差 。该函数需要传入一个数字型的可迭代对象(比如列表、元组等),然后返回数据的样本方差 。
以下是一个计算样本方差的示例代码python求协方差函数:
```python
import statistics
data = https://www.04ip.com/post/[1, 3, 4, 2, 6, 5]
# 计算数据的样本方差
variance = statistics.variance(data)
print("数据的样本方差为python求协方差函数:", variance)
```
在上述代码中,python求协方差函数我们首先定义python求协方差函数了一个包含多个数值的列表`data`,然后使用`statistics.variance()`函数来求这些数值的样本方差,并将结果输出到屏幕上 。
什么是协方差与相关系数?协方差矩阵如何计算?np.cov函数协方差 (Covariance)在概率论和统计学中用于衡量两个变量python求协方差函数的总体误差 。而方差是协方差的一种特殊情况python求协方差函数,即当两个变量是相同的情况 。
协方差的计算公式如下所示:
方差的计算公式如下所示:
可以看到协方差是度量两个变量的总体误差,而方差只考虑单变量的离散程度 。
如果连个变量相互独立,则协方差为零 。
则它的协方差矩阵计算公式为:
我们将该矩阵命名为矩阵A,这个矩阵共有三种属性,每种属性有5个变量,我们需要计算学科与学科之间的协方差,综合在一起就构成python求协方差函数了协方差矩阵 。
我们将语文、数学、英语分别编号为1、2、3,则它们之间的协方差记为E11、E12、E13、E22、E23、E33,最终该矩阵的协方差矩阵为:
可以根据协方差计算公式进行计算:
首先,我们需要得到这三科的平均成绩:
然后用矩阵A减去平均成绩(三科分别减去各科的均值) , 得到新的矩阵:
E12的计算公式为:
由于样本减均值刚刚已经计算完成,这里直接进行计算:
同理,E13的计算公式为:
根据Eij=Eji的性质 , 得到新的矩阵:
然后除以样本的个数5,得到最后的协方差矩阵:
知道了协方差矩阵如何计算之后我们来使用numpy内置的函数 cov() 来计算协方差矩阵 。假设有两个变量 x0 和 x1 ,有三组观测(0,2)(1,1)和(2,0) 。
值得注意的是,np.cov(x) 函数的默认输入矩阵x每一行代表一个特征,每一列代表一个观测,所以在进行协方差矩阵计算的时候需要对输入矩阵进行转置,或者将默认参数设置为False,如 np.cov(x,rowvar=False)。
输出:
亦或者:
输出:
相关系数是研究变量之间线性相关程度的量 。
相关系数的计算公式如下所示:
可以表示X和Y线性关系的紧密程度.
参考:
协方差 - 百度百科
相关系数 - 百度百科
协方差矩阵概念
python数据分析之主成分分析主成分分析python求协方差函数,又称PCA,是指将多个变量通过线性变换以后选出较少个重要变量的一种多元统计方法 。
主成分分析计算步骤python求协方差函数:
1、计算协方差矩阵
2、求出相应的特征值及相应的正交化单位向量
3、选择主成分
4、计算主成分载荷
5、计算主成分得分
【python求协方差函数 python 协方差】python求协方差函数的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于python 协方差、python求协方差函数的信息别忘了在本站进行查找喔 。

    推荐阅读