mysql大字段怎么优化 mysql 修改字段长度

问个mysql优化问题在开始演示之前,我们先介绍下两个概念 。
概念一,数据的可选择性基数,也就是常说的cardinality值 。
查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步操作所涉及到的记录数,而这个相关数据就是cardinality 。简单来说,就是每个值在每个字段中的唯一值分布状态 。
比如表t1有100行记录,其中一列为f1 。f1中唯一值的个数可以是100个,也可以是1个 , 当然也可以是1到100之间的任何一个数字 。这里唯一值越的多少,就是这个列的可选择基数 。
那看到这里我们就明白了 , 为什么要在基数高的字段上建立索引 , 而基数低的的字段建立索引反而没有全表扫描来的快 。当然这个只是一方面 , 至于更深入的探讨就不在我这篇探讨的范围了 。
概念二,关于HINT的使用 。
这里我来说下HINT是什么,在什么时候用 。
HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划 。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化 。
比如:表t1经过大量的频繁更新操作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL , 那么有可能这条SQL的执行计划就不是最优的 。为什么说有可能呢?
来看下具体演示
譬如 , 以下两条SQL ,
A:
select * from t1 where f1 = 20;
B:
select * from t1 where f1 = 30;
如果f1的值刚好频繁更新的值为30 , 并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等 , 那么对这两条语句来说,可能不准确的就是B了 。
这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限 , 需要的可以查阅手册 。
【mysql大字段怎么优化 mysql 修改字段长度】那回到正题上,MySQL 8.0 带来了几个HINT,我今天就举个index_merge的例子 。
示例表结构:
mysql desc t1; ------------ -------------- ------ ----- --------- ---------------- | Field| Type| Null | Key | Default | Extra| ------------ -------------- ------ ----- --------- ---------------- | id| int(11)| NO| PRI | NULL| auto_increment || rank1| int(11)| YES| MUL | NULL||| rank2| int(11)| YES| MUL | NULL||| log_time| datetime| YES| MUL | NULL||| prefix_uid | varchar(100) | YES|| NULL||| desc1| text| YES|| NULL||| rank3| int(11)| YES| MUL | NULL|| ------------ -------------- ------ ----- --------- ---------------- 7 rows in set (0.00 sec)
表记录数:
mysql select count(*) from t1; ---------- | count(*) | ---------- |32768 | ---------- 1 row in set (0.01 sec)
这里我们两条经典的SQL:
SQL C:
select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;
SQL D:
select * from t1 where rank1 =100and rank2 =100and rank3 =100;
表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引 。
那我们来看SQL C的查询计划 。
显然,没有用到任何索引,扫描的行数为32034,cost为3243.65 。
mysql explainformat=json select * from t1where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {"query_block": {"select_id": 1,"cost_info": {"query_cost": "3243.65"},"table": {"table_name": "t1","access_type": "ALL","possible_keys": ["idx_rank1","idx_rank2","idx_rank3"],"rows_examined_per_scan": 32034,"rows_produced_per_join": 115,"filtered": "0.36","cost_info": {"read_cost": "3232.07","eval_cost": "11.58","prefix_cost": "3243.65","data_read_per_join": "49K"},"used_columns": ["id","rank1","rank2","log_time","prefix_uid","desc1","rank3"],"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"}}}1 row in set, 1 warning (0.00 sec)
我们加上hint给相同的查询,再次看看查询计划 。
这个时候用到了index_merge,union了三个列 。扫描的行数为1103 , cost为441.09,明显比之前的快了好几倍 。
mysql explainformat=json select /*index_merge(t1) */ * from t1where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {"query_block": {"select_id": 1,"cost_info": {"query_cost": "441.09"},"table": {"table_name": "t1","access_type": "index_merge","possible_keys": ["idx_rank1","idx_rank2","idx_rank3"],"key": "union(idx_rank1,idx_rank2,idx_rank3)","key_length": "5,5,5","rows_examined_per_scan": 1103,"rows_produced_per_join": 1103,"filtered": "100.00","cost_info": {"read_cost": "330.79","eval_cost": "110.30","prefix_cost": "441.09","data_read_per_join": "473K"},"used_columns": ["id","rank1","rank2","log_time","prefix_uid","desc1","rank3"],"attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"}}}1 row in set, 1 warning (0.00 sec)
我们再看下SQL D的计划:
不加HINT,
mysql explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {"query_block": {"select_id": 1,"cost_info": {"query_cost": "534.34"},"table": {"table_name": "t1","access_type": "ref","possible_keys": ["idx_rank1","idx_rank2","idx_rank3"],"key": "idx_rank1","used_key_parts": ["rank1"],"key_length": "5","ref": ["const"],"rows_examined_per_scan": 555,"rows_produced_per_join": 0,"filtered": "0.07","cost_info": {"read_cost": "478.84","eval_cost": "0.04","prefix_cost": "534.34","data_read_per_join": "176"},"used_columns": ["id","rank1","rank2","log_time","prefix_uid","desc1","rank3"],"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))"}}}1 row in set, 1 warning (0.00 sec)
加了HINT,
mysql explain format=json select /*index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {"query_block": {"select_id": 1,"cost_info": {"query_cost": "5.23"},"table": {"table_name": "t1","access_type": "index_merge","possible_keys": ["idx_rank1","idx_rank2","idx_rank3"],"key": "intersect(idx_rank1,idx_rank2,idx_rank3)","key_length": "5,5,5","rows_examined_per_scan": 1,"rows_produced_per_join": 1,"filtered": "100.00","cost_info": {"read_cost": "5.13","eval_cost": "0.10","prefix_cost": "5.23","data_read_per_join": "440"},"used_columns": ["id","rank1","rank2","log_time","prefix_uid","desc1","rank3"],"attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))"}}}1 row in set, 1 warning (0.00 sec)
对比下以上两个,加了HINT的比不加HINT的cost小了100倍 。
总结下,就是说表的cardinality值影响这张的查询计划 , 如果这个值没有正常更新的话,就需要手工加HINT了 。相信MySQL未来的版本会带来更多的HINT 。
mysql 一张有近一百个字段的表,通过主键查询数据非常慢,查询一条数据需要2秒左右 。怎么作优化1张表100个字段 。。。。分表,然后用表外连接查询可以调高查询效率,也可以用复合查询,不过复合查询效率没有外连接查询效率高,但是sql语句写起来方便 。如果数据量不是上百万级别的,推荐用复合查询 。
MySql中LongText类型大字段查询优化1.mysql在操作数据的时候,以page为单位
??不管是更新,插入,删除一行数据,都需要将那行数据所在的page读到内存中 , 然后在进行操作,这样就存在一个命中率的问题,如果一个page中能够相对的存放足够多的行,那么命中率就会相对高一些,性能就会有提升
2.innodb的page大小默认为16kb
??innodb存储引擎表为索引组织表,树底层的叶子节点为一双向链表 , 因此每个页中至少应该有两行记录 , 这就决定了innodb在存储一行数据的时候不能够超过8k , 但事实上应该更小,有一些InnoDB内部数据结构要存储以及预留操作空间 ,
3.blob,text大字段
??innodb只会存放前768字节在数据页中,而剩余的数据则会存储在溢出段中(发生溢出情况的时候适用),最大768字节的作用是便于创建前缀索引/prefix index,其余更多的内容存储在额外的page里,哪怕只是多了一个字节 。因此,所有列长度越短越好
4.扩展存储禁用了自适应哈希
??因为需要完整的比较列的整个长度 , 才能发现是不是正确的数据(哈希帮助InnoDB非常快速的找到“猜测的位置”,但是必须检查“猜测的位置”是不是正确) 。因为自适应哈希是完全的内存结构,并且直接指向Buffer Pool中访问“最”频繁的页面,但对于扩展存储空间却无法使用Adaptive Hash
变长大字段类型包括blob,text,varchar,其中varchar列值长度大于某数N时也会存溢出页 , 在latin1字符集下N值可以这样计算:innodb的块大小默认为16kb,由于innodb存储引擎表为索引组织表,树底层的叶子节点为一双向链表 , 因此每个页中至少应该有两行记录,这就决定了innodb在存储一行数据的时候不能够超过8k,减去其它列值所占字节数,约等于N 。对于InnoDB,内存是极为珍贵的,如果把768字节长度的blob都放在数据页 , 虽然可以节省部分IO,但是能缓存行数就变少,也就是能缓存的索引值变少了 , 降低了索引效率
Mysql把每个BLOB和TEXT值当作一个独立的对象处理 。存储引擎在存储时通常会做特殊处理 。当BLOB和TEXT值太大时,InnoDB会使用专门的“外部”储存区域来进行存储 , 此时每个值在行内需要1~4个字节存储一个指针,然后在内部存储区域存储实际的值 。
Mysql不能将BLOB和TEXT列全部长度的字符串进行索引
mysql的 io 以page为单位,因此不必要的数据(大字段)也会随着需要操作的数据一同被读取到内存中来,这样带来的问题由于大字段会占用较大的内存(相比其他小字段),使得内存利用率较差 , 造成更多的随机读取 。从上面的分析来看,我们已经看到性能的瓶颈在于由于大字段存放在数据页中,造成了内存利用较差,带来过多的随机读 , 那怎么来优化掉这个大字段的影响
5.6版本以后,新增选项 innodb_page_size 可以修改innodb的page默认大?。⒉煌萍鲂薷恼飧雠渲?
5.6版本之后mysql新增索引FULLTEXT可用来增加大文本搜索速度
mysql大字段怎么优化的介绍就聊到这里吧 , 感谢你花时间阅读本站内容,更多关于mysql 修改字段长度、mysql大字段怎么优化的信息别忘了在本站进行查找喔 。

    推荐阅读