python 怎么求标准正态分布某个值【T分布函数线python t分布的分布函数图像】示例:
1、from numpy import *;
2、def rand_Matrix():
3、randArr=random.randn(2,3);
4、randMat=mat(randArr);
5、return randMat;
一种结果如下:
1、matrix([[ 0.3150869 , -0.02041996, -0.15361071],
2、[-0.75507988,0.80393683, -0.31790917]])
扩展资料
Python正态分布概率计算方法:
def st_norm(u):
'''标准正态分布'''
import math
x=abs(u)/math.sqrt(2)
T=(0.0705230784,0.0422820123,0.0092705272,
0.0001520143,0.0002765672,0.0000430638)
E=1-pow((1 sum([a*pow(x,(i 1))
for i,a in enumerate(T)])),-16)
p=0.5-0.5*E if u0 else 0.5 0.5*E
return(p)
def norm(a,sigma,x):
'''一般正态分布'''
u=(x-a)/sigma
return(st_norm(u))
while 1:
'''输入一个数时默认为标准正态分布
输入三个数(空格隔开)时分别为期望、方差、x
输入 stop 停止'''
S=input('please input the parameters:\n')
if S=='stop':break
try:
L=[float(s) for s in S.split()]
except:
print('Input error!')
continue
if len(L)==1:
print('f(x)=%.5f'%st_norm(L[0]))
elif len(L)==3:
print('f(x)=%.5f'%norm(L[0],L[1],L[2]))
else:
print('Input error!')
python中plt.post是什么函数2018-05-04 11:11:36
122点赞
qiurisiyu2016
码龄7年
关注
matplotlib
1、plt.plot(x,y)
plt.plot(x,y,format_string,**kwargs)
x轴数据,y轴数据,format_string控制曲线的格式字串
format_string 由颜色字符,风格字符,和标记字符
import matplotlib.pyplot as plt
plt.plot([1,2,3,6],[4,5,8,1],’g-s’)
plt.show()
结果
**kwards:
color 颜色
linestyle 线条样式
marker 标记风格
markerfacecolor 标记颜色
markersize 标记大小 等等
plt.plot([5,4,3,2,1])
plt.show()
结果
plt.plot([20,2,40,6,80])#缺省x为[0,1,2,3,4,...]
plt.show()
结果
plt.plot()参数设置
Property Value Type
alpha 控制透明度 , 0为完全透明,1为不透明
animated [True False]
antialiased or aa [True False]
clip_box a matplotlib.transform.Bbox instance
clip_on [True False]
clip_path a Path instance and a Transform instance, a Patch
color or c 颜色设置
contains the hit testing function
dash_capstyle [‘butt’ ‘round’ ‘projecting’]
dash_joinstyle [‘miter’ ‘round’ ‘bevel’]
dashes sequence of on/off ink in points
data 数据(np.array xdata, np.array ydata)
figure 画板对象a matplotlib.figure.Figure instance
label 图示
linestyle or ls 线型风格[‘-’ ‘–’ ‘-.’ ‘:’ ‘steps’ …]
linewidth or lw 宽度float value in points
lod [True False]
marker 数据点的设置[‘ ’ ‘,’ ‘.’ ‘1’ ‘2’ ‘3’ ‘4’]
markeredgecolor or mec any matplotlib color
markeredgewidth or mew float value in points
markerfacecolor or mfc any matplotlib color
markersize or ms float
markevery [ None integer (startind, stride) ]
picker used in interactive line selection
pickradius the line pick selection radius
solid_capstyle [‘butt’ ‘round’ ‘projecting’]
solid_joinstyle [‘miter’ ‘round’ ‘bevel’]
transform a matplotlib.transforms.Transform instance
visible [True False]
xdata np.array
ydata np.array
zorder any number
确定x,y值 , 将其打印出来
x=np.linspace(-1,1,5)
y=2*x 1
plt.plot(x,y)
plt.show()
2、plt.figure()用来画图,自定义画布大小
fig1 = plt.figure(num='fig111111', figsize=(10, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#0000FF')
plt.plot(x,y1)#在变量fig1后进行plt.plot操作,图形将显示在fig1中
fig2 = plt.figure(num='fig222222', figsize=(6, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#FF0000')
plt.plot(x,y2)#在变量fig2后进行plt.plot操作,图形将显示在fig2中
plt.show()
plt.close()
结果
fig1 = plt.figure(num='fig111111', figsize=(10, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#0000FF')
plt.plot(x,y1)
plt.plot(x,y2)
fig2 = plt.figure(num='fig222222', figsize=(6, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#FF0000')
plt.show()
plt.close()
结果:
3、plt.subplot(222)
将figure设置的画布大小分成几个部分,参数‘221’表示2(row)x2(colu),即将画布分成2x2 , 两行两列的4块区域 , 1表示选择图形输出的区域在第一块,图形输出区域参数必须在“行x列”范围 , 此处必须在1和2之间选择——如果参数设置为subplot(111),则表示画布整个输出 , 不分割成小块区域,图形直接输出在整块画布上
plt.subplot(222)
plt.plot(y,xx)#在2x2画布中第二块区域输出图形
plt.show()
plt.subplot(223)#在2x2画布中第三块区域输出图形
plt.plot(y,xx)
plt.subplot(224)# 在在2x2画布中第四块区域输出图形
plt.plot(y,xx)
4、plt.xlim设置x轴或者y轴刻度范围
如
plt.xlim(0,1000)#设置x轴刻度范围 , 从0~1000#lim为极限,范围
plt.ylim(0,20)# 设置y轴刻度的范围,从0~20
5、plt.xticks():设置x轴刻度的表现方式
fig2 = plt.figure(num='fig222222', figsize=(6, 3), dpi=75, facecolor='#FFFFFF', edgecolor='#FF0000')
plt.plot(x,y2)
plt.xticks(np.linspace(0,1000,15,endpoint=True))# 设置x轴刻度
plt.yticks(np.linspace(0,20,10,endpoint=True))
结果
6、ax2.set_title('xxx')设置标题,画图
#产生[1,2,3,...,9]的序列
x = np.arange(1,10)
y = x
fig = plt.figure()
ax1 = fig.add_subplot(221)
#设置标题
ax1.set_title('Scatter Plot1')
plt.xlabel('M')
plt.ylabel('N')
ax2 = fig.add_subplot(222)
ax2.set_title('Scatter Plot2clf')
#设置X轴标签
plt.xlabel('X')#设置X/Y轴标签是在对应的figure后进行操作才对应到该figure
#设置Y轴标签
plt.ylabel('Y')
#画散点图
ax1.scatter(x,y,c = 'r',marker = 'o')#可以看出画散点图是在对figure进行操作
ax2.scatter(x,y,c = 'b',marker = 'x')
#设置图标
plt.legend('show picture x1 ')
#显示所画的图
plt.show()
结果
7、plt.hist()绘制直方图(可以将高斯函数这些画出来)
绘图都可以调用matplotlib.pyplot库来进行,其中的hist函数可以直接绘制直方图
调用方式:
n, bins, patches = plt.hist(arr, bins=10, normed=0, facecolor='black', edgecolor='black',alpha=1,histtype='bar')
hist的参数非常多 , 但常用的就这六个,只有第一个是必须的,后面四个可选
arr: 需要计算直方图的一维数组
bins: 直方图的柱数,可选项,默认为10
normed: 是否将得到的直方图向量归一化 。默认为0
facecolor: 直方图颜色
edgecolor: 直方图边框颜色
alpha: 透明度
histtype: 直方图类型,‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’
返回值 :
n: 直方图向量,是否归一化由参数normed设定
bins: 返回各个bin的区间范围
patches: 返回每个bin里面包含的数据,是一个list
from skimage import data
import matplotlib.pyplot as plt
img=data.camera()
plt.figure("hist")
arr=img.flatten()
n, bins, patches = plt.hist(arr, bins=256, normed=1,edgecolor='None',facecolor='red')
plt.show()
例:
mu, sigma = 0, .1
s = np.random.normal(loc=mu, scale=sigma, size=1000)
a,b,c = plt.hist(s, bins=3)
print("a: ",a)
print("b: ",b)
print("c: ",c)
plt.show()
结果:
a:[ 85. 720. 195.]#每个柱子的值
b:[-0.36109509 -0.13573180.089631490.31499478]#每个柱的区间范围
c:a list of 3 Patch objects#总共多少柱子
8、ax1.scatter(x,y,c = 'r',marker = 'o')
使用注意:确定了figure就一定要确定象限,然后用scatter,或者不确定象限,直接使用plt.scatter
x = np.arange(1,10)
y = x
fig = plt.figure()
a=plt.subplot()#默认为一个象限
# a=fig.add_subplot(222)
a.scatter(x,y,c='r',marker='o')
plt.show()
结果
x = np.arange(1,10)
y = x
plt.scatter(x,y,c='r',marker='o')
plt.show()
结果
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(1,10)
y = x
plt.figure()
plt.scatter(x,y,c='r',marker='o')
plt.show()
结果
文章知识点与官方知识档案匹配
Python入门技能树基础语法函数
211242 人正在系统学习中
打开CSDN APP,看更多技术内容
plt的一些函数的使用_班花i的博客_plt函数
plt.函数 Fwuyi的博客 6513 1plt.figure( )函数:创建画布 2plt.plot(x, y, format_string, label="图例名"):绘制点和线, 并控制样式 。其中x是x轴数据,y是y轴数据,xy一般是列表和数组 。format_string 是字符串的格式包括线...
继续访问
Python的数据科学函数包(三)——matplotlib(plt)_hxxjxw的博客...
import matplotlib.pyplot as plt plt.imshow(img) plt.show() plt.imshow()有一个cmap参数,即指定颜色映射规则 。默认的cmap即颜料板是十色环 哪怕是单通道图,值在0-1之间,用plt.imshow()仍然可以显示彩色图,就是因为颜色映射的关...
继续访问
对Python中plt的画图函数详解
今天小编就为大家分享一篇对Python中plt的画图函数详解,具有很好的参考价值,希望对大家有所帮助 。一起跟随小编过来看看吧
plt.plot()函数详解
plt.plot()函数详细介绍 plt.plot(x, y, format_string, **kwargs) 参数 说明 x X轴数据,列表或数组,可选 y Y轴数据,列表或数组 format_string 控制曲线的格式字符串,可选 **kwargs 第二组或更多(x,y,format_string),可画多条曲线 format_string 由颜色字符、风格字符、标记字符组成 颜色字符 'b' 蓝色 'm' 洋红色 magenta 'g' 绿色 'y.
继续访问
python图像处理基础知识(plt库函数说明)_小草莓爸爸的博客_p...
1.画图(plt库)1.1 plt.figure(num=’’,figsize=(x, y),dpi= ,facecolor=’’,edgecolor=’’)num:表示整个图标的标题 figsize:表示尺寸 facecolor:表示1.2 plt.plot(x,y,format_string,**kwargs)...
继续访问
plt的一些函数使用_neo3301的博客_plt函数
1、plt.plot(x,y) plt.plot(x,y,format_string,**kwargs) x轴数据,y轴数据,format_string控制曲线的格式字串 format_string 由颜色字符,风格字符,和标记字符 import matplotlib.pyplot as plt ...
继续访问
最新发布 python plt 绘图详解(plt.版本)
python plt绘图详解
继续访问
python图像处理基础知识(plt库函数说明)
import matplotlib.pyplot as plt的一些基础用法,包括直方图
继续访问
plt.subplot() 函数解析_Ensoleile 。的博客_plt.subplot
plt.subplot()函数用于直接制定划分方式和位置进行绘图 。函数原型 subplot(nrows, ncols, index, **kwargs),一般我们只用到前三个参数,将整个绘图区域分成 nrows 行和 ncols 列,而 index 用于对子图进行编号 。
继续访问
...中plt的画图函数_Ethan的博客的博客_python的plt函数
1、plt.legend plt.legend(loc=0)#显示图例的位置,自适应方式 说明: 'best' : 0, (only implemented for axes legends)(自适应方式) 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, ...
继续访问
plt.函数
1 plt.figure( ) 函数:创建画布 2 plt.plot(x, y, format_string, label="图例名"):绘制点和线, 并控制样式 。其中x是x轴数据,y是y轴数据 , xy一般是列表和数组 。format_string 是字符串的格式包括线条颜色、点类型、线类型三个部分 。向参数label传入图例名,使用plt.legend( )创建图例 。2.1 画一条含x、y的线条 import matplotlib.pyplot as plt x = [1, 2, 3, 4] y
继续访问
Python深度学习入门之plt画图工具基础使用(注释详细 , 超级简单)
Python自带的plt是深度学习最常用的库之一,在发表文章时必然得有图作为支撑,plt为深度学习必备技能之一 。作为深度学习入门,只需要掌握一些基础画图操作即可,其他等要用到的时候看看函数API就行 。1 导入plt库(名字长,有点难记) import matplotlib.pyplot as plt 先随便画一个图,保存一下试试水: plt.figure(figsize=(12,8), dpi=80) plt.plot([1,2,6,4],[4,5,6,9]) plt.savefig('./plt_pn
继续访问
python画图plt函数学习_dlut_yan的博客_python plt
figure()函数可以帮助我们同时处理生成多个图,而subplot()函数则用来实现,在一个大图中,出现多个小的子图 。处理哪个figure,则选择哪个figure,再进行画图 。参考博客 importmatplotlib.pyplotaspltimportnumpyasnp x=np.arange(-1,1,0.1...
继续访问
plt.plot()函数_安之若醇的博客_plt.plot()函数
plt.plot()函数是matplotlib.pyplot用于画图的函数传一个值列表:import numpy as npimport matplotlib.pyplot as pltt=[1,2,3,4,5]y=[3,4,5,6,7]plt.plot(t, y)当x省略的时候,默认[0,1…,N-1]递增可以传元组也可以传...
继续访问
python画图plt函数学习
python中的绘图工具 :matplotli,专门用于画图 。一. 安装与导入 工具包安装:conda install matplotli 导入:import matplotlib.pyplot as plt 画图主要有:列表绘图;多图绘图;数组绘图 二. 列表绘图 1. 基础绘图:plt.plot;plt.show import matplotlib.pyplot as plt x = [1, 2, 3, 4] y = [1, 4, 9, 16] plt.plot(x, y) plt.show()
继续访问
python中plt的含义_对Python中plt的画图函数详解
1、plt.legendplt.legend(loc=0)#显示图例的位置,自适应方式说明:'best' : 0, (only implemented for axes legends)(自适应方式)'upper right' : 1,'upper left' : 2,'lower left' : 3,'lower right' : 4,'right' : 5,'cent...
继续访问
Python中plt绘图包的基本使用方法
其中,前两个输入参数表示x轴和y轴的坐标,plot函数将提供的坐标点连接,即成为要绘制的各式线型 。常用的参数中 , figsize需要一个元组值,表示空白画布的横纵坐标比;plt.xticks()和plt.yticks()函数用于设置坐标轴的步长和刻度 。plt.xlabel()、plt.ylabel()和plt.title()函数分别用于设置x坐标轴、y坐标轴和图标的标题信息 。的数据处理时,发现了自己对plt的了解和使用的缺失,因此进行一定的基础用法的学习,方便之后自己的使用,而不需要频繁的查阅资料 。...
继续访问
python-plt.xticks与plt.yticks
栗子: plt.figure(figsize=(10, 10)) for i in range(25): plt.subplot(5, 5, i 1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() 设置x或y轴对应显
继续访问
plt绘图总结
matplotlib绘图
继续访问
Python的数据科学函数包(三)——matplotlib(plt)
继续访问
热门推荐 python plt 画图
使用csv数据文件在百度网盘 import pandas as pd unrate = pd.read_csv('unrate.csv') # pd.to_datetime() 转换成日期格式,即由 1948/1/1 转换为 1948-01-01 unrate['DATE'] = pd.to_datetime(unrate['DATE']) print(unrate.head(12)) ...
继续访问
python数据可视化实现步骤,Python数据可视化图实现过程详解
Python数据可视化图实现过程详解更多python视频教程请到菜鸟教程画分布图代码示例:# encoding=utf-8import matplotlib.pyplot as pltfrom pylab import * # 支持中文mpl.rcParams[‘font.sans-serif’] = [‘SimHei’]‘mention...
继续访问
matplotlib-plt.plot用法
文章目录 英语好的直接参考这个网站 matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=https://www.04ip.com/post/None, **kwargs) 将x,y绘制为线条或标记 参数: x, y:数据点的水平/垂直坐标 。x值是可选的 , 默认为range(len(y)) 。通常,这些参数是 一维数组 。它们也可以是标量,也可以是二维的(在这种情况下,列代表单独的数据集) 。这些参数不能作为关键字传递 。fmt:格式字符串,格式字符串只是用于快速设置基本行属性的缩
继续访问
python Plt学习
plt的简单学习
继续访问
plt.show()和plt.imshow()的区别
问题:plt.imshow()无法显示图像 解决方法:添加:plt.show(),即 plt.imshow(image) #image表示待处理的图像 plt.show() 原理:plt.imshow()函数负责对图像进行处理,并显示其格式,而plt.show()则是将plt.imshow()处理后的函数显示出来 。...
继续访问
python题库刷题网站_python在线刷题网站
{"moduleinfo":{"card_count":[{"count_phone":1,"count":1}],"search_count":[{"count_phone":4,"count":4}]},"card":[{"des":"阿里技术人对外发布原创技术内容的最大平台;社区覆盖了云计算、大数据、人工智能、IoT、云原生、数据库、微服务、安全、开发与运维9大技术领域 。","link1":...
继续访问
python xticks_Python Matplotlib.pyplot.yticks()用法及代码示例
Matplotlib是Python中的一个库,它是数字的-NumPy库的数学扩展 。Pyplot是Matplotlib模块的基于状态的接口 , 该模块提供了MATLAB-like接口 。Matplotlib.pyplot.yticks()函数matplotlib库的pyplot模块中的annotate()函数用于获取和设置y轴的当前刻度位置和标签 。用法: matplotlib.pyplot.yticks...
继续访问
python的plt函数_plt.plot画图函数
[‘font.sans-serif’]=[‘SimHei’]plt.rcParams[‘axes.unicode_minus’] = False#设置横纵坐标的名称以及对应字体格式font1 = {‘weight’ : ‘normal’,‘size’ : 15,...
继续访问
plt函数
写评论
7
794
122
python数据统计分析1. 常用函数库
? scipy包中的stats模块和statsmodels包是python常用的数据分析工具T分布函数线python,scipy.stats以前有一个models子模块T分布函数线python,后来被移除了 。这个模块被重写并成为了现在独立的statsmodels包 。
?scipy的stats包含一些比较基本的工具T分布函数线python,比如:t检验T分布函数线python,正态性检验,卡方检验之类 , statsmodels提供了更为系统的统计模型 , 包括线性模型,时序分析 , 还包含数据集,做图工具等等 。
2. 小样本数据的正态性检验
(1) 用途
?夏皮罗维尔克检验法 (Shapiro-Wilk) 用于检验参数提供的一组小样本数据线是否符合正态分布,统计量越大则表示数据越符合正态分布,但是在非正态分布的小样本数据中也经常会出现较大的W值 。需要查表来估计其概率 。由于原假设是其符合正态分布,所以当P值小于指定显著水平时表示其不符合正态分布 。
?正态性检验是数据分析的第一步,数据是否符合正态性决定了后续使用不同的分析和预测方法,当数据不符合正态性分布时 , 我们可以通过不同的转换方法把非正太态数据转换成正态分布后再使用相应的统计方法进行下一步操作 。
(2) 示例
(3) 结果分析
?返回结果 p-value=https://www.04ip.com/post/0.029035290703177452,比指定的显著水平(一般为5%)小 , 则拒绝假设:x不服从正态分布 。
3. 检验样本是否服务某一分布
(1) 用途
?科尔莫戈罗夫检验(Kolmogorov-Smirnov test),检验样本数据是否服从某一分布 , 仅适用于连续分布的检验 。下例中用它检验正态分布 。
(2) 示例
(3) 结果分析
?生成300个服从N(0,1)标准正态分布的随机数,在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布 。最终返回的结果,p-value=https://www.04ip.com/post/0.9260909172362317,比指定的显著水平(一般为5%)大 , 则我们不能拒绝假设:x服从正态分布 。这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布 。因此我们的假设被接受,认为x服从正态分布 。如果p-value小于我们指定的显著性水平,则我们可以肯定地拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的 。
4.方差齐性检验
(1) 用途
?方差反映了一组数据与其平均值的偏离程度 , 方差齐性检验用以检验两组或多组数据与其平均值偏离程度是否存在差异,也是很多检验和算法的先决条件 。
(2) 示例
(3) 结果分析
?返回结果 p-value=https://www.04ip.com/post/0.19337536323599344, 比指定的显著水平(假设为5%)大,认为两组数据具有方差齐性 。
5. 图形描述相关性
(1) 用途
?最常用的两变量相关性分析,是用作图描述相关性 , 图的横轴是一个变量,纵轴是另一变量,画散点图,从图中可以直观地看到相关性的方向和强弱,线性正相关一般形成由左下到右上的图形;负面相关则是从左上到右下的图形,还有一些非线性相关也能从图中观察到 。
(2) 示例
(3) 结果分析
?从图中可以看到明显的正相关趋势 。
6. 正态资料的相关分析
(1) 用途
?皮尔森相关系数(Pearson correlation coefficient)是反应两变量之间线性相关程度的统计量 , 用它来分析正态分布的两个连续型变量之间的相关性 。常用于分析自变量之间,以及自变量和因变量之间的相关性 。
(2) 示例
(3) 结果分析
?返回结果的第一个值为相关系数表示线性相关程度 , 其取值范围在[-1,1] , 绝对值越接近1,说明两个变量的相关性越强,绝对值越接近0说明两个变量的相关性越差 。当两个变量完全不相关时相关系数为0 。第二个值为p-value , 统计学上,一般当p-value0.05时,可以认为两变量存在相关性 。
7. 非正态资料的相关分析
(1) 用途
?斯皮尔曼等级相关系数(Spearman’s correlation coefficient for ranked data ),它主要用于评价顺序变量间的线性相关关系,在计算过程中,只考虑变量值的顺序(rank, 值或称等级),而不考虑变量值的大小 。常用于计算类型变量的相关性 。
(2) 示例
(3) 结果分析
?返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关 。第二个值为p-value , p-value越?。硎鞠喙爻潭仍较灾?。
8. 单样本T检验
(1) 用途
?单样本T检验,用于检验数据是否来自一致均值的总体,T检验主要是以均值为核心的检验 。注意以下几种T检验都是双侧T检验 。
(2) 示例
(3) 结果分析
?本例中生成了2列100行的数组,ttest_1samp的第二个参数是分别对两列估计的均值,p-value返回结果,第一列1.47820719e-06比指定的显著水平(一般为5%)小,认为差异显著,拒绝假设;第二列2.83088106e-01大于指定显著水平 , 不能拒绝假设:服从正态分布 。
9. 两独立样本T检验
(1) 用途
?由于比较两组数据是否来自于同一正态分布的总体 。注意:如果要比较的两组数据不满足方差齐性,需要在ttest_ind()函数中添加参数equal_var = False 。
(2) 示例
(3) 结果分析
?返回结果的第一个值为统计量,第二个值为p-value,pvalue=https://www.04ip.com/post/0.19313343989106416,比指定的显著水平(一般为5%)大,不能拒绝假设 , 两组数据来自于同一总结,两组数据之间无差异 。
10. 配对样本T检验
(1) 用途
?配对样本T检验可视为单样本T检验的扩展,检验的对象由一群来自正态分布独立样本更改为二群配对样本观测值之差 。它常用于比较同一受试对象处理的前后差异,或者按照某一条件进行两两配对分别给与不同处理的受试对象之间是否存在差异 。
(2) 示例
(3) 结果分析
?返回结果的第一个值为统计量,第二个值为p-value,pvalue=https://www.04ip.com/post/0.80964043445811551,比指定的显著水平(一般为5%)大,不能拒绝假设 。
11. 单因素方差分析
(1) 用途
?方差分析(Analysis of Variance,简称ANOVA),又称F检验 , 用于两个及两个以上样本均数差别的显著性检验 。方差分析主要是考虑各组之间的平均数差别 。
?单因素方差分析(One-wayAnova),是检验由单一因素影响的多组样本某因变量的均值是否有显著差异 。
?当因变量Y是数值型,自变量X是分类值,通常的做法是按X的类别把实例成分几组,分析Y值在X的不同分组中是否存在差异 。
(2) 示例
(3) 结果分析
?返回结果的第一个值为统计量,它由组间差异除以组间差异得到,上例中组间差异很大,第二个返回值p-value=https://www.04ip.com/post/6.2231520821576832e-19小于边界值(一般为0.05),拒绝原假设, 即认为以上三组数据存在统计学差异,并不能判断是哪两组之间存在差异。只有两组数据时,效果同 stats.levene 一样 。
12. 多因素方差分析
(1) 用途
?当有两个或者两个以上自变量对因变量产生影响时,可以用多因素方差分析的方法来进行分析 。它不仅要考虑每个因素的主效应,还要考虑因素之间的交互效应 。
(2) 示例
(3) 结果分析
?上述程序定义了公式 , 公式中 , "~"用于隔离因变量和自变量,” “用于分隔各个自变量,":"表示两个自变量交互影响 。从返回结果的P值可以看出,X1和X2的值组间差异不大,而组合后的T:G的组间有明显差异 。
13. 卡方检验
(1) 用途
?上面介绍的T检验是参数检验,卡方检验是一种非参数检验方法 。相对来说,非参数检验对数据分布的要求比较宽松,并且也不要求太大数据量 。卡方检验是一种对计数资料的假设检验方法,主要是比较理论频数和实际频数的吻合程度 。常用于特征选择,比如,检验男人和女人在是否患有高血压上有无区别,如果有区别,则说明性别与是否患有高血压有关,在后续分析时就需要把性别这个分类变量放入模型训练 。
?基本数据有R行C列, 故通称RC列联表(contingency table), 简称RC表,它是观测数据按两个或更多属性(定性变量)分类时所列出的频数表 。
(2) 示例
(3) 结果分析
?卡方检验函数的参数是列联表中的频数,返回结果第一个值为统计量值,第二个结果为p-value值,p-value=https://www.04ip.com/post/0.54543425102570975,比指定的显著水平(一般5%)大,不能拒绝原假设 , 即相关性不显著 。第三个结果是自由度,第四个结果的数组是列联表的期望值分布 。
14. 单变量统计分析
(1) 用途
?单变量统计描述是数据分析中最简单的形式,其中被分析的数据只包含一个变量,不处理原因或关系 。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况 , 并找出数据的分布模型 。
?单变量数据统计描述从集中趋势上看,指标有:均值,中位数 , 分位数 , 众数;从离散程度上看,指标有:极差、四分位数、方差、标准差、协方差、变异系数,从分布上看,有偏度,峰度等 。需要考虑的还有极大值,极小值(数值型变量)和频数 , 构成比(分类或等级变量) 。
?此外,还可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图 。
15. 多元线性回归
(1) 用途
?多元线性回归模型(multivariable linear regression model ),因变量Y(计量资料)往往受到多个变量X的影响 , 多元线性回归模型用于计算各个自变量对因变量的影响程度,可以认为是对多维空间中的点做线性拟合 。
(2) 示例
(3) 结果分析
?直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显著性,P0.05则认为自变量具有统计学意义 , 从上例中可以看到收入INCOME最有显著性 。
16. 逻辑回归
(1) 用途
?当因变量Y为2分类变量(或多分类变量时)可以用相应的logistic回归分析各个自变量对因变量的影响程度 。
(2) 示例
(3) 结果分析
?直接通过返回结果中各变量的P值与0.05比较 , 来判定对应的解释变量的显著性,P0.05则认为自变量具有统计学意义 。
如何在Python中计算累积正态分布Python正态分布概率计算方法T分布函数线python,喜欢算法T分布函数线python的伙伴们可以参考学习下 。需要用到math模块 。先T分布函数线python了解一下这个模块方法T分布函数线python,再来写代码会更好上手 。
def st_norm(u):
'''标准正态分布'''
import math
x=abs(u)/math.sqrt(2)
T=(0.0705230784,0.0422820123,0.0092705272,
0.0001520143,0.0002765672,0.0000430638)
E=1-pow((1 sum([a*pow(x,(i 1))
for i,a in enumerate(T)])),-16)
p=0.5-0.5*E if u0 else 0.5 0.5*E
return(p)
def norm(a,sigma,x):
'''一般正态分布'''
u=(x-a)/sigma
return(st_norm(u))
while 1:
'''输入一个数时默认为标准正态分布
输入三个数(空格隔开)时分别为期望、方差、x
输入 stop 停止'''
S=input('please input the parameters:\n')
if S=='stop':break
try:
L=[float(s) for s in S.split()]
except:
print('Input error!')
continue
if len(L)==1:
print('f(x)=%.5f'%st_norm(L[0]))
elif len(L)==3:
print('f(x)=%.5f'%norm(L[0],L[1],L[2]))
else:
print('Input error!')
如何用python求解一个带正态分布和ln函数的方程import scipy.stats as sta
import math
def option_call(s,x,r,sigma,t):
d1=(math.log(s/x) (r sigma**2/2)*t)/(math.sqrt(t)*sigma)
d2=d1-sigma*math.sqrt(t)
c=s*sta.norm.cdf(d1,0,1)-x*sta.norm.cdf(d2,0,1)*math.exp(-r*t)
return c
python两个函数图像怎么分开画而且加表格一、函数说明
在使用python作图时,应用最广的就是matplotlib包,但我们平时使用matplotlib时主要是画一些简单的图表 , 很少有涉及分段函数 。本次针对数值实验中两个较为复杂的函数,使用其构建分段函数图像 。
二、图像代码
2.11、函数公式:
y=4sin(4πt)-sgn(t-0.3)-sgn(0.72-t)
2.12、代码如下:
import numpy as np
import matplotlib.pyplot as plt
def sgn(x):
if x0:
return 1
elif x0:
return -1
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=4*np.sin(4*np.pi*i)-sgn(i-0.3)-sgn(0.72-i)
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("Heavsine")
plt.show()
2.13、运行结果如下:
81036331d721706ae12808beb99b9574.png
2.21、函数公式:
479029.html
2.22、代码如下:
import numpy as np
import matplotlib.pyplot as plt
def g(x):
if x0:
return x
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=g(i*(1-i))*np.sin((2*np.pi*1.05)/(i 0.05))
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("TimeSine")
plt.show()
关于T分布函数线python和t分布的分布函数图像的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。
推荐阅读
- 电脑硬盘固态机械怎么区分,电脑区分固态硬盘和机械硬盘
- erp系统实训报告总结与心得体会,erp实训报告心得体会1000字
- 即墨晚上直播带货,即墨网红直播基地招聘主播
- linux解压后撤销命令 linux解压压缩命令到具体路径
- java8执行js代码的简单介绍
- erp系统合格证打印,ec合格证明
- linux命令剪切,linux 剪切
- 高质量的java代码 java如何写出高质量代码
- 校园新媒体如何做起,校园新媒体工作是什么