求python 熵值法实现代码一、基本原理
在信息论中,熵是对不确定性的一种度量 。信息量越大 , 不确定性就越?。匾簿驮叫ython 求熵函数;信息量越小,不确定性越大,熵也越大 。
根据熵的特性,可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度 , 指标的离散程度越大 , 该指标对综合评价的影响(权重)越大,其熵值越小 。
二、熵值法步骤
1. 选取n个国家 , m个指标,则为第i个国家的第j个指标的数值(i=1, 2…, n; j=1,2,…, m)python 求熵函数;
2. 指标的归一化处理:异质指标同质化
由于各项指标的计量单位并不统一,因此在用它们计算综合指标前,先要对它们进行标准化处理,即把指标的绝对值转化为相对值,并令 , 从而解决各项不同质指标值的同质化问题 。而且 , 由于正向指标和负向指标数值代表的含义不同(正向指标数值越高越好,负向指标数值越低越好),因此 , 对于高低指标我们用不同的算法进行数据标准化处理 。其具体方法如下:
正向指标:
负向指标:
则为第i个国家的第j个指标的数值(i=1, 2…, n; j=1, 2,…, m) 。为python 求熵函数了方便起见,归一化后的数据仍记为;
3. 计算第j项指标下第i个国家占该指标的比重:
4. 计算第j项指标的熵值:
其中. 满足;
5. 计算信息熵冗余度:
6. 计算各项指标的权值:
7. 计算各国家的综合得分:
[code]function [s,w]=shang(x)
% 函数shang.m, 实现用熵值法求各指标(列)的权重及各数据行的得分
% x为原始数据矩阵, 一行代表一个国家, 每列对应一个指标
% s返回各行得分, w返回各列权重
[n,m]=size(x); % n=23个国家, m=5个指标
%% 数据的归一化处理
% Matlab2010b,2011a,b版本都有bug,需如下处理. 其它版本直接用[X,ps]=mapminmax(x',0,1);即可
[X,ps]=mapminmax(x');
ps.ymin=0.002; % 归一化后的最小值
ps.ymax=0.996; % 归一化后的最大值
ps.yrange=ps.ymax-ps.ymin; % 归一化后的极差,若不调整该值, 则逆运算会出错
X=mapminmax(x',ps);
% mapminmax('reverse',xx,ps); % 反归一化, 回到原数据
X=X';% X为归一化后的数据, 23行(国家), 5列(指标)
%% 计算第j个指标下,第i个记录占该指标的比重p(i,j)
for i=1:n
for j=1:m
p(i,j)=X(i,j)/sum(X(:,j));
end
end
%% 计算第j个指标的熵值e(j)
k=1/log(n);
for j=1:m
e(j)=-k*sum(p(:,j).*log(p(:,j)));
end
d=ones(1,m)-e;% 计算信息熵冗余度
w=d./sum(d);% 求权值w
s=w*p';% 求综合得分[\code]
测试程序:
data.txt 数据如下:
114.6 1.1 0.71 85.0 346
55.3 0.96 0.4 69.0 300
132.4 0.97 0.54 73.0 410
152.1 1.04 0.49 77.0 433
103.5 0.96 0.66 67.0 385
81.0 1.08 0.54 96.0 336
179.3 0.88 0.59 89.0 446
29.8 0.83 0.49 120.0 289
92.7 1.15 0.44 154.0 300
248.6 0.79 0.5 147.0 483
115.0 0.74 0.65 252.0 453
64.9 0.59 0.5 167.0 402
163.6 0.85 0.58 220.0 495
95.7 1.02 0.48 160.0 384
139.5 0.70 0.59 217.0 478
89.9 0.96 0.39 105.0 314
76.7 0.95 0.51 162.0 341
121.8 0.83 0.60 140.0 401
42.1 1.08 0.47 110.0 326
78.5 0.89 0.44 94.0 280
77.8 1.19 0.57 91.0 364
90.0 0.95 0.43 89.0 301
100.6 0.82 0.59 83.0 456
执行代码:
[code]x=load('data.txt');% 读入数据
[s,w]=shang(x)[\code]
运行结果:
s =
Columns 1 through 9
0.04310.01030.03710.04040.03690.03220.05070.02290.0397
Columns 10 through 18
0.06930.08780.04660.08600.05030.08000.02340.04560.0536
Columns 19 through 23
0.02720.01810.03640.02020.0420
w =
0.16600.09810.17570.33480.2254
pytorch CrossEntropyLoss(), Softmax(), logSoftmax, NLLLosssoftmax(input, target)前面分析过其中的dim,就不多说,给出的结果是一个样本在C个类别上的概率分别是多少,概率之和为1.
logSoftmax(input, target)就是先softmax,然后将结果log一下,softmax的数值∈[0,1],log以后就是负无穷到0之间,这样做的好处解决softmax可能 带来的上溢出和下溢出问题 , 加快运算速度,提高数据稳定性。
NLLLoss(input, target)是按照target数值(一个代表一行)将input中每行对应位置的数据取出来 , 去掉负号 , 求和 , 再取平均 。
logSoftmaxNLLLoss就是计算交叉熵
CrossEntropyLoss(input, target) = logSoftmaxNLLLoss = log(Softmax)NLLLoss
因此,在分类问题中 , 要使用CrossEntropyLoss函数计算交叉熵损失 , 在model中最后一层就不需要添加Softmax层了 。
通过实际测试确定,CrossEntropyLoss中内置的LogSoftmax默认是按照行加和为1.
参考:
;depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.nonecase
Tensorflow四种交叉熵函数计算公式转自:
注意 :tensorflow交叉熵计算函数输入中的logits都不是softmax或sigmoid的 输出 ,而是softmax或sigmoid函数的 输入,因为它在 函数内部进行sigmoid或softmax操作
tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,labels=None, logits=None, name=None)
参数:_sentinel:本质上是不用的参数,不用填
logits:一个数据类型(type)是float32或float64;
shape:[batch_size,num_classes],单样本是[num_classes]
labels:和logits具有相同的type(float)和shape的张量(tensor) ,
name:操作的名字,可填可不填
输出:
loss,shape:[batch_size,num_classes]
Note: 它对于输入的logits先通过sigmoid函数计算 , 再计算它们的交叉熵,但是它对交叉熵的计算方式进行了优化,使得结果不至于溢出 。它适用于每个类别相互独立但互不排斥的情况:例如一幅图可以同时包含一条狗和一只大象 。output不是一个数,而是一个batch中每个样本的loss,所以一般配合tf.reduce_mea(loss)使用
计算公式:
Python 程序:
输出的E1,E2结果相同
tf.nn.softmax_cross_entropy_with_logits(_sentinel=None, labels=None, logits=None, dim=-1, name=None)argument:
_sentinel: 本质上是不用的参数 , 不用填
logits:一个数据类型(type)是float32或float64;
shape :[batch_size,num_classes]
labels:和logits具有相同type和shape的张量(tensor),,是一个有效的概率 , sum(labels)=1, one_hot=True(向量中只有一个值为1.0 , 其他值为0.0)
name:操作的名字,可填可不填
output: loss,shape:[batch_size]
Note: 它对于输入的logits先通过softmax( 不同于sigmoid )函数计算,再计算它们的交叉熵 , 但是它对交叉熵的计算方式进行了优化 , 使得结果不至于溢出 。它适用于每个类别相互独立且排斥的情况,一幅图只能属于一类,而不能同时包含一条狗和一只大象 。output不是一个数,而是一个batch中每个样本的loss,所以一般配合tf.reduce_mean(loss)使用 。
计算公式:
Python程序:
import tensorflow as tf
import numpy as np
def softmax(x):
sum_raw = np.sum(np.exp(x),axis=-1)
x1 = np.ones(np.shape(x))
for i in range(np.shape(x)[0]):
x1[i] = np.exp(x[i])/sum_raw[i]
return x1
y = np.array([[1,0,0],[0,1,0],[0,0,1],[1,0,0],[0,1,0]])#每一行只有一个1
logits =np.array([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]])
y_pred =softmax(logits)
E1 = -np.sum(y*np.log(y_pred),-1)
print(E1)
sess = tf.Session()
y = np.array(y).astype(np.float64)
E2 = sess.run(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=logits))
print(E2)
输出的E1,E2结果相同
tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None,labels=None,logits=None, name=None)
argument:
_sentinel:本质上是不用的参数,不用填
logits:一个数据类型(type)是float32或float64;
shape:[batch_size,num_classes]
labels: shape为[batch_size],labels[i]是{0,1,2,……,num_classes-1}的一个索引, type为int32或int64
name:操作的名字,可填可不填
output:
loss,shape:[batch_size]
Note:它对于输入的logits先通过softmax函数计算 , 再计算它们的交叉熵,但是它对交叉熵的计算方式进行了优化,使得结果不至于溢出
它适用于每个类别相互独立且排斥的情况,一幅图只能属于一类 , 而不能同时包含一条狗和一只大象
output不是一个数,而是一个batch中每个样本的loss,所以一般配合tf.reduce_mean(loss)使用
计算公式:
和tf.nn.softmax_cross_entropy_with_logits()一样,只是要将labels转换成tf.nn.softmax_cross_entropy_with_logits()中labels的形式
tf.nn.weighted_cross_entropy_with_logits(labels,logits, pos_weight, name=None)
计算具有权重的sigmoid交叉熵sigmoid_cross_entropy_with_logits()
argument:
_sentinel:本质上是不用的参数,不用填
logits:一个数据类型(type)是float32或float64;
shape:[batch_size,num_classes],单样本是[num_classes]
labels:和logits具有相同的type(float)和shape的张量(tensor),
pos_weight:正样本的一个系数
name:操作的名字,可填可不填
output:
loss , shape:[batch_size,num_classes]
计算公式:
用python实现红酒数据集的ID3,C4.5和CART算法?ID3算法介绍
ID3算法全称为迭代二叉树3代算法(Iterative Dichotomiser 3)
该算法要先进行特征选择,再生成决策树,其中特征选择是基于“信息增益”最大的原则进行的 。
但由于决策树完全基于训练集生成的,有可能对训练集过于“依赖”,即产生过拟合现象 。因此在生成决策树后 , 需要对决策树进行剪枝 。剪枝有两种形式,分别为前剪枝(Pre-Pruning)和后剪枝(Post-Pruning),一般采用后剪枝 。
信息熵、条件熵和信息增益
信息熵:来自于香农定理 , 表示信息集合所含信息的平均不确定性 。信息熵越大,表示不确定性越大,所含的信息量也就越大 。
设x 1 , x 2 , x 3 , . . . x n {x_1, x_2, x_3, ...x_n}x
1
,x
2
,x
3
,...x
n
为信息集合X的n个取值,则x i x_ix
i
的概率:
P ( X = i ) = p i , i = 1 , 2 , 3 , . . . , n P(X=i) = p_i, i=1,2,3,...,n
P(X=i)=p
i
,i=1,2,3,...,n
信息集合X的信息熵为:
H ( X ) = ? ∑ i = 1 n p i log ? p i H(X) =- \sum_{i=1}^{n}{p_i}\log{p_i}
【python 求熵函数 python熵权法求权重】H(X)=?
i=1
∑
n
p
i
logp
i
条件熵:指已知某个随机变量的情况下,信息集合的信息熵 。
设信息集合X中有y 1 , y 2 , y 3 , . . . y m {y_1, y_2, y_3, ...y_m}y
1
,y
2
,y
3
,...y
m
组成的随机变量集合Y,则随机变量(X,Y)的联合概率分布为
P ( x = i , y = j ) = p i j P(x=i,y=j) = p_{ij}
P(x=i,y=j)=p
ij
条件熵:
H ( X ∣ Y ) = ∑ j = 1 m p ( y j ) H ( X ∣ y j ) H(X|Y) = \sum_{j=1}^m{p(y_j)H(X|y_j)}
H(X∣Y)=
j=1
∑
m
p(y
j
)H(X∣y
j
)
由
H ( X ∣ y j ) = ? ∑ j = 1 m p ( y j ) ∑ i = 1 n p ( x i ∣ y j ) log ? p ( x i ∣ y j ) H(X|y_j) = - \sum_{j=1}^m{p(y_j)}\sum_{i=1}^n{p(x_i|y_j)}\log{p(x_i|y_j)}
H(X∣y
j
)=?
j=1
∑
m
p(y
j
)
i=1
∑
n
p(x
i
∣y
j
)logp(x
i
∣y
j
)
和贝叶斯公式:
p ( x i y j ) = p ( x i ∣ y j ) p ( y j ) p(x_iy_j) = p(x_i|y_j)p(y_j)
p(x
i
y
j
)=p(x
i
∣y
j
)p(y
j
)
可以化简条件熵的计算公式为:
H ( X ∣ Y ) = ∑ j = 1 m ∑ i = 1 n p ( x i , y j ) log ? p ( x i ) p ( x i , y j ) H(X|Y) = \sum_{j=1}^m \sum_{i=1}^n{p(x_i, y_j)\log\frac{p(x_i)}{p(x_i, y_j)}}
H(X∣Y)=
j=1
∑
m
i=1
∑
n
p(x
i
,y
j
)log
p(x
i
,y
j
)
p(x
i
)
信息增益:信息熵-条件熵,用于衡量在知道已知随机变量后,信息不确定性减小越大 。
d ( X , Y ) = H ( X ) ? H ( X ∣ Y ) d(X,Y) = H(X) - H(X|Y)
d(X,Y)=H(X)?H(X∣Y)
python代码实现
import numpy as np
import math
def calShannonEnt(dataSet):
""" 计算信息熵 """
labelCountDict = {}
for d in dataSet:
label = d[-1]
if label not in labelCountDict.keys():
labelCountDict[label] = 1
else:
labelCountDict[label]= 1
entropy = 0.0
for l, c in labelCountDict.items():
p = 1.0 * c / len(dataSet)
entropy -= p * math.log(p, 2)
return entropy
def filterSubDataSet(dataSet, colIndex, value):
"""返回colIndex特征列label等于value,并且过滤掉改特征列的数据集"""
subDataSetList = []
for r in dataSet:
if r[colIndex] == value:
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex1:]))
subDataSetList.append(newR)
return np.array(subDataSetList)
def chooseFeature(dataSet):
""" 通过计算信息增益选择最合适的特征"""
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeatureIndex = -1
for i in range(featureNum):
uniqueValues = np.unique(dataSet[:, i])
condition_entropy = 0.0
for v in uniqueValues:#计算条件熵
subDataSet = filterSubDataSet(dataSet, i, v)
p = 1.0 * len(subDataSet) / len(dataSet)
condition_entropy= p * calShannonEnt(subDataSet)
infoGain = entropy - condition_entropy#计算信息增益
if infoGain = bestInfoGain:#选择最大信息增益
bestInfoGain = infoGain
bestFeatureIndex = i
return bestFeatureIndex
def creatDecisionTree(dataSet, featNames):
""" 通过训练集生成决策树 """
featureName = featNames[:]# 拷贝featNames,此处不能直接用赋值操作,否则新变量会指向旧变量的地址
classList = list(dataSet[:, -1])
if len(set(classList)) == 1:# 只有一个类别
return classList[0]
if dataSet.shape[1] == 1:#当所有特征属性都利用完仍然无法判断样本属于哪一类,此时归为该数据集中数量最多的那一类
return max(set(classList), key=classList.count)
bestFeatureIndex = chooseFeature(dataSet)#选择特征
bestFeatureName = featNames[bestFeatureIndex]
del featureName[bestFeatureIndex]#移除已选特征列
decisionTree = {bestFeatureName: {}}
featureValueUnique = sorted(set(dataSet[:, bestFeatureIndex]))#已选特征列所包含的类别,通过递归生成决策树
for v in featureValueUnique:
copyFeatureName = featureName[:]
subDataSet = filterSubDataSet(dataSet, bestFeatureIndex, v)
decisionTree[bestFeatureName][v] = creatDecisionTree(subDataSet, copyFeatureName)
return decisionTree
def classify(decisionTree, featnames, featList):
""" 使用训练所得的决策树进行分类 """
classLabel = None
root = decisionTree.keys()[0]
firstGenDict = decisionTree[root]
featIndex = featnames.index(root)
for k in firstGenDict.keys():
if featList[featIndex] == k:
if isinstance(firstGenDict[k], dict):#若子节点仍是树,则递归查找
classLabel = classify(firstGenDict[k], featnames, featList)
else:
classLabel = firstGenDict[k]
return classLabel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
下面用鸢尾花数据集对该算法进行测试 。由于ID3算法只能用于标称型数据,因此用在对连续型的数值数据上时,还需要对数据进行离散化,离散化的方法稍后说明,此处为了简化,先使用每一种特征所有连续性数值的中值作为分界点,小于中值的标记为1 , 大于中值的标记为0 。训练1000次 , 统计准确率均值 。
from sklearn import datasets
from sklearn.model_selection import train_test_split
iris = datasets.load_iris()
data = https://www.04ip.com/post/np.c_[iris.data, iris.target]
scoreL = []
for i in range(1000):#对该过程进行10000次
trainData, testData = https://www.04ip.com/post/train_test_split(data)#区分测试集和训练集
featNames = iris.feature_names[:]
for i in range(trainData.shape[1] - 1):#对训练集每个特征,以中值为分界点进行离散化
splitPoint = np.mean(trainData[:, i])
featNames[i] = featNames[i] '=' '{:.3f}'.format(splitPoint)
trainData[:, i] = [1 if x = splitPoint else 0for x in trainData[:, i]]
testData[:, i] = [1 if x = splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
print 'score: ', np.mean(scoreL)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
输出结果为:score: 0.7335,即准确率有73% 。每次训练和预测的准确率分布如下:
数据离散化
然而,在上例中对特征值离散化的划分点实际上过于“野蛮”,此处介绍一种通过信息增益最大的标准来对数据进行离散化 。原理很简单,当信息增益最大时,说明用该点划分能最大程度降低数据集的不确定性 。
具体步骤如下:
对每个特征所包含的数值型特征值排序
对相邻两个特征值取均值,这些均值就是待选的划分点
用每一个待选点把该特征的特征值划分成两类 , 小于该特征点置为1 , 大于该特征点置为0,计算此时的条件熵,并计算出信息增益
选择信息使信息增益最大的划分点进行特征离散化
实现代码如下:
def filterRawData(dataSet, colIndex, value, tag):
""" 用于把每个特征的连续值按照区分点分成两类,加入tag参数,可用于标记筛选的是哪一部分数据"""
filterDataList = []
for r in dataSet:
if (tag and r[colIndex] = value) or ((not tag) and r[colIndex]value):
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex1:]))
filterDataList.append(newR)
return np.array(filterDataList)
def dataDiscretization(dataSet, featName):
""" 对数据每个特征的数值型特征值进行离散化 """
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
for featIndex in range(featureNum):#对于每一个特征
uniqueValues = sorted(np.unique(dataSet[:, featIndex]))
meanPoint = []
for i in range(len(uniqueValues) - 1):# 求出相邻两个值的平均值
meanPoint.append(float(uniqueValues[i 1]uniqueValues[i]) / 2.0)
bestInfoGain = 0.0
bestMeanPoint = -1
for mp in meanPoint:#对于每个划分点
subEntropy = 0.0#计算该划分点的信息熵
for tag in range(2):#分别划分为两类
subDataSet = filterRawData(dataSet, featIndex, mp, tag)
p = 1.0 * len(subDataSet) / len(dataSet)
subEntropy= p * calShannonEnt(subDataSet)
## 计算信息增益
infoGain = entropy - subEntropy
## 选择最大信息增益
if infoGain = bestInfoGain:
bestInfoGain = infoGain
bestMeanPoint = mp
featName[featIndex] = featName[featIndex]"=""{:.3f}".format(bestMeanPoint)
dataSet[:, featIndex] = [1 if x = bestMeanPoint else 0 for x in dataSet[:, featIndex]]
return dataSet, featName
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
重新对数据进行离散化,并重复该步骤1000次,同时用sklearn中的DecisionTreeClassifier对相同数据进行分类,分别统计平均准确率 。运行代码如下:
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
scoreL = []
scoreL_sk = []
for i in range(1000):#对该过程进行1000次
featNames = iris.feature_names[:]
trainData, testData = https://www.04ip.com/post/train_test_split(data)#区分测试集和训练集
trainData_tmp = copy.copy(trainData)
testData_tmp = copy.copy(testData)
discritizationData,discritizationFeatName= dataDiscretization(trainData, featNames) #根据信息增益离散化
for i in range(testData.shape[1]-1):#根据测试集的区分点离散化训练集
splitPoint = float(discritizationFeatName[i].split('=')[-1])
testData[:, i] = [1 if x=splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
clf = DecisionTreeClassifier('entropy')
clf.fit(trainData[:, :-1], trainData[:, -1])
clf.predict(testData[:, :-1])
scoreL_sk.append(clf.score(testData[:, :-1], testData[:, -1]))
print 'score: ', np.mean(scoreL)
print 'score-sk: ', np.mean(scoreL_sk)
fig = plt.figure(figsize=(10, 4))
plt.subplot(1,2,1)
pd.Series(scoreL).hist(grid=False, bins=10)
plt.subplot(1,2,2)
pd.Series(scoreL_sk).hist(grid=False, bins=10)
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
两者准确率分别为:
score: 0.7037894736842105
score-sk: 0.7044736842105263
准确率分布如下:
两者的结果非常一样 。
(但是 。。为什么根据信息熵离散化得到的准确率比直接用均值离散化的准确率还要低?。浚客鄣目蕹錾?。。)
最后一次决策树图形如下:
决策树剪枝
由于决策树是完全依照训练集生成的,有可能会有过拟合现象,因此一般会对生成的决策树进行剪枝 。常用的是通过决策树损失函数剪枝,决策树损失函数表示为:
C a ( T ) = ∑ t = 1 T N t H t ( T )α ∣ T ∣ C_a(T) = \sum_{t=1}^TN_tH_t(T)\alpha|T|
C
a
(T)=
t=1
∑
T
N
t
H
t
(T) α∣T∣
其中,H t ( T ) H_t(T)H
t
(T)表示叶子节点t的熵值,T表示决策树的深度 。前项∑ t = 1 T N t H t ( T ) \sum_{t=1}^TN_tH_t(T)∑
t=1
T
N
t
H
t
(T)是决策树的经验损失函数当随着T的增加,该节点被不停的划分的时候 , 熵值可以达到最小,然而T的增加会使后项的值增大 。决策树损失函数要做的就是在两者之间进行平衡,使得该值最小 。
对于决策树损失函数的理解,如何理解决策树的损失函数? - 陶轻松的回答 - 知乎这个回答写得挺好,可以按照答主的思路理解一下
C4.5算法
ID3算法通过信息增益来进行特征选择会有一个比较明显的缺点:即在选择的过程中该算法会优先选择类别较多的属性(这些属性的不确定性?。?条件熵小,因此信息增益会大),另外 , ID3算法无法解决当每个特征属性中每个分类都只有一个样本的情况(此时每个属性的条件熵都为0) 。
C4.5算法ID3算法的改进,它不是依据信息增益进行特征选择,而是依据信息增益率 , 它添加了特征分裂信息作为惩罚项 。定义分裂信息:
S p l i t I n f o ( X , Y ) = ? ∑ i n ∣ X i ∣ ∣ X ∣ log ? ∣ X i ∣ ∣ X ∣ SplitInfo(X, Y) =-\sum_i^n\frac{|X_i|}{|X|}\log\frac{|X_i|}{|X|}
SplitInfo(X,Y)=?
i
∑
n
∣X∣
∣X
i
∣
log
∣X∣
∣X
i
∣
则信息增益率为:
G a i n R a t i o ( X , Y ) = d ( X , Y ) S p l i t I n f o ( X , Y ) GainRatio(X,Y)=\frac{d(X,Y)}{SplitInfo(X, Y)}
GainRatio(X,Y)=
SplitInfo(X,Y)
d(X,Y)
关于ID3和C4.5算法
在学习分类回归决策树算法时,看了不少的资料和博客 。关于这两个算法 , ID3算法是最早的分类算法,这个算法刚出生的时候其实带有很多缺陷:
无法处理连续性特征数据
特征选取会倾向于分类较多的特征
没有解决过拟合的问题
没有解决缺失值的问题
即该算法出生时是没有带有连续特征离散化、剪枝等步骤的 。C4.5作为ID3的改进版本弥补列ID3算法不少的缺陷:
通过信息最大增益的标准离散化连续的特征数据
在选择特征是标准从“最大信息增益”改为“最大信息增益率”
通过加入正则项系数对决策树进行剪枝
对缺失值的处理体现在两个方面:特征选择和生成决策树 。初始条件下对每个样本的权重置为1 。
特征选择:在选取最优特征时,计算出每个特征的信息增益后,需要乘以一个**“非缺失值样本权重占总样本权重的比例”**作为系数来对比每个特征信息增益的大小
生成决策树:在生成决策树时,对于缺失的样本我们按照一定比例把它归属到每个特征值中,比例为该特征每一个特征值占非缺失数据的比重
关于C4.5和CART回归树
作为ID3的改进版本,C4.5克服了许多缺陷,但是它自身还是存在不少问题:
C4.5的熵运算中涉及了对数运算 , 在数据量大的时候效率非常低 。
C4.5的剪枝过于简单
C4.5只能用于分类运算不能用于回归
当特征有多个特征值是C4.5生成多叉树会使树的深度加深
————————————————
版权声明:本文为CSDN博主「Sarah Huang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明 。
原文链接:
交叉熵损失函数是什么?平滑函数 。
交叉熵损失函数,也称为对数损失或者logistic损失 。当模型产生了预测值之后 , 将对类别的预测概率与真实值(由0或1组成)进行不比较,计算所产生的损失,然后基于此损失设置对数形式的惩罚项 。
在神经网络中,所使用的Softmax函数是连续可导函数,这使得可以计算出损失函数相对于神经网络中每个权重的导数(在《机器学习数学基础》中有对此的完整推导过程和案例,这样就可以相应地调整模型的权重以最小化损失函数 。
扩展资料:
注意事项:
当预测类别为二分类时,交叉熵损失函数的计算公式如下图,其中y是真实类别(值为0或1),p是预测类别的概率(值为0~1之间的小数) 。
计算二分类的交叉熵损失函数的python代码如下图,其中esp是一个极小值,第五行代码clip的目的是保证预测概率的值在0~1之间,输出的损失值数组求和后,就是损失函数最后的返回值 。
参考资料来源:百度百科-交叉熵
参考资料来源:百度百科-损失函数
python 求熵函数的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于python熵权法求权重、python 求熵函数的信息别忘了在本站进行查找喔 。
推荐阅读
- 微信怎么搞公众号视频,微信公众号怎么弄视频上去
- 虚拟加速空间,虚拟加速空间怎么设置
- 电子信息毕业设计网站好,电子信息工程毕业设计做什么比较好
- go语言怎么开方 go语言 gc
- postgre存储文件,post数据放在哪里
- linux后台命令vi的简单介绍
- 7676棋牌游戏的简单介绍
- mysql数据怎么编辑 mysql数据库编辑
- 放心的mysql连接数据库,mysql57连接数据库