内点罚函数法c语言程序 内点惩罚函数法c语言

什么是内点法分类:教育/科学科学技术工程技术科学
解析:
内部罚函数(内点法)
对于仅带不等式约束的非线性规划问题,也可考虑使用另一种“惩罚”方式 。引进的罚函数的作用相当于在可行域的边界上设置障碍,是求解的迭代过程始终在可行域内部进行 。由于这种罚函数使得迭代点保持在可行域内部,故称为内部罚函数或障碍函数 。
记可行域内部为
S0={ x | g(x)0 , j=1, 2, …, m}
且 S0≠? 我们可以仿照外部罚函数法的叠加办法来构造增广目标函数 , 使得该增广目标函数在可行域内部离边界较远处与原问题的目标函数f(x) 尽可能接近,而在靠近边界是函数之迅速增大
常取
B(x,r) = r ∑ 1/gj(x), (r0)

B(x,r) = r ∑ ln (gj(x)), (r0)
为障碍函数 。在S 的边界上,B(x,r) 为正无穷大 。
社选区一旦剪切区域0的“障碍”引子列{ rk} k=1, 2, …,,由每一 rk 作一对应的障碍函数B(x,rk),在利用它构造出定义在 S0 内的增广目标函数列
F(x,rk) =f(x)B(x,rk)
则若点 x(k) 从S0 内向S 的边界趋近时,F(x,rk) 的值将无限增大,由此关于该增广目标函数的无约束问题
min F(x,rk) (1)
得最优解必落在可行域内部,且难以接近可行域边界 。若原余额书问题的最优解在 内部,则党 渠道某一适当值时,无约束问题1的最优解可以达到它 。若原问题的最优解在 S 的边界上 , 则随障碍因子rk 逐渐减小,相应的问题的最优解点烈将向S边界上的问题的最优解逼近 。这就是内部罚函数的求解过程 。很显然该方法的初始点 x(0) 必须在可行域内部 。
内点惩罚函数法和外点惩罚函数法各有什么特点内点惩罚函数法特点:求解时的探索点始终保持在可行域内 。
外点惩罚函数法特点:对初始点没有要求,可以任意取定义域内任意一点 。
惩罚函数可以分为外点法和内点法,其中外点法更通用 , 可解决约束为等式和不等式混合的情形,外点法对初始点也没有要求,可以任意取定义域内任意一点 。而内点法初始点必须为可行区内一点,在约束比较复杂时,这个选择内点法的初始点是有难度的,并且内点法只能解决约束为不等式情形 。
罚函数的应用
1、电机优化设计
在电机优化设计中应用广义罚函数法优化方法,既可以避免罚函数内点法因罚因子取得不当而造成的寻优困难 , 又保留了寻优逼近边界的优点,通过目标函数调整和罚函数的容差迭代,可以达到快速收敛的目的 。同时,广义罚函数优化方法,还具有边界附近进一步搜索最优点的特性 。在应用中 , 该方法是一种实用性很强而有效的内点寻优方法 。
在机械领域,利用广义罚函数优化方法编制的计算机寻优模块与各类外点法或可行方案寻求方法结合,具有显著的优化效果 。
2、广义指数因子预测
该模型实施的关键在于预报方程的变量选择和系数估计,在线性回归模型的拟合过程中引入罚函数能够压缩回归方程系数估计,将方程中一部分自变量的系数压缩为0,从而达到自变量选择、降低误差方差的目的,并保证预报方程的稳定性,从而提高预测精度 。因此,应用罚函数方法来实现广义指数因子预报方程的拟合是合理的 。
内点惩罚函数法和外点惩罚函数法各有什么特点?1.外部罚函数法是从非可行解出发逐渐移动到可行区域内点罚函数法c语言程序的方法 。
2.内部罚函数法也称为障碍罚函数法内点罚函数法c语言程序,这种方法是在可行域内部进行搜索内点罚函数法c语言程序 , 约束边界起到类似围墙内点罚函数法c语言程序的作用,如果当前解远离约束边界时 , 则罚函数值是非常小的,否则罚函数值接近无穷大的方法 。
罚函数法又称乘子法,是指将有约束最优化问题转化为求解无约束最优化问题内点罚函数法c语言程序:其中M为足够大的正数, 起"惩罚"作用,称之为罚因子,F(x, M )称为罚函数 。内部罚函数法也称为障碍罚函数法 。
这种方法是在可行域内部进行搜索,约束边界起到类似围墙的作用,如果当前解远离约束边界时,则罚函数值是非常小的,否则罚函数值接近无穷大的方法 。在进化计算中,研究者选择外部罚函数法的原因主要是该方法不需要提供初始可行解 。其中B(x)是优化过程中新的目标函数 , Gi和Hj分别是约束条件gi(x)和hj(x)的函数,ri和cj是常数,称为罚因子 。
罚函数法和拉格朗日乘子法的区别一、作用不同:
惩罚函数法在M越来越大的情况下 , 函数F趋近于病态,乘子法克服这个缺点根据拉格朗日分解加了一个uih(x)M变为了c/2 。
主要思想是引入一个新的参数λ(即拉格朗日乘子) , 将约束条件函数与原函数联系到一起,使能配成与变量数量相等的等式方程 。
二、定义不同:
基本的拉格朗日乘子法(又称为拉格朗日乘数法) , 就是求函数f(x1,x2,)在g(x1,x2,)=0的约束条件下的极值的方法 。
罚函数法是从非可行解出发逐渐移动到可行区域的方法 。罚函数法在理论上是可行的,在实际计算中的缺点是罚因子M的取值难于把握,太小起不到惩罚作用;太大则由于误差的影响会导致错误 。
三、使用方法不同:
在进化计算中,研究者选择外部罚函数法的原因主要是该方法不需要提供初始可行解 。需要提供初始可行解则是内部罚函数法的主要缺点 。由于进化算法应用到实际问题中可能存在搜索可行解就是NP难问题,因此这个缺点是非常致命的 。
基本的拉格朗日乘子法就bai是求函数f(x1,x2,...)在约束条件g(x1,x2,...)=0下的极值的方法 。其主要思想是将约束条件函数与原函数联立,从而求出使原函数取得极值的各个变量的解 。
扩展资料:
如果这个实际问题的最大或最小值存在,一般说来驻点只有一个,于是最值可求 。
条件极值问题也可以化为无条件极值求解,但有些条件关系比较复杂,代换和运算很繁,而相对来说“拉格朗日乘数法”不需代换 , 运算简单一点,这就是优势 。
条件φ(x,y,z)一定是个等式,不妨设为φ(x,y,z)=m
则再建一个函数g(x,y,z)=φ(x,y,z)-m
g(x,y,z)=0以g(x,y,z)代替φ(x,y,z)
在许多极值问题中,函数的自变量往往要受到一些条件的限制,比如 , 要设计一个容积为 V的长方体形开口水箱,确定长、宽和高,使水箱的表面积最小. 。设水箱的长、宽、高分别为 x,y,z, 则水箱容积V=xyz 。
参考资料来源:百度百科-拉格朗日乘数法
分别用内点惩罚函数法和外点惩罚函数法求解下列约束优化问题(用matlab编程)1、首先在电脑中启动matlab内点罚函数法c语言程序,新建一个函数文件内点罚函数法c语言程序,用来写目标函数 。
2、在编辑器窗口中写入要求内点罚函数法c语言程序的目标函数内点罚函数法c语言程序,并保存,注意使函数名与文件名相同 。
3、然后再新建一个函数文件,用来编写非线性约束条件 。步骤及其注意事项同上 。额外需要注意内点罚函数法c语言程序的是,需要将两个函数文件放在同一个文件夹中 。
4、最后,在命令行窗口处写入fmincon命令 。此处需要注意的是,对于没有的线性约束条件的位置药用空矩阵代替 , 并且初始条件需要满足非线性约束条件 。
5、敲下键盘上的enter建,结果得出 。可以发现exitflag=1是大于0的 , 所以结果正确 。
【内点罚函数法c语言程序 内点惩罚函数法c语言】内点罚函数法c语言程序的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于内点惩罚函数法c语言、内点罚函数法c语言程序的信息别忘了在本站进行查找喔 。

    推荐阅读