python的ode函数 python函数ord

用ODE函数解微分方程和用dsolve有什么区别【python的ode函数 python函数ord】用ode函数和dsolve函数求解微分方程的区别python的ode函数:
1、用ode函数求解python的ode函数,得到是微分方程的数值解 。
2、用dsolve函数求解,得到是微分方程的解析解 。
谁能帮我解释下,ode函数打开chap2_4eq.m文件,里面应该是写成function f=chap2_4eq(t,y,flag,para),flag输入宗量,它专供结算指令(如ode45)作调用通知,在运行中,解算指令会根据需要向flag发出不同的字符串,一般与switch函数连用,[]取的是缺省设置 。para应该是指被传递的参数,在chap2_4eq.m中定义了para为传递参数后,在主程序中就可以不用定义para为传递参数了
如何使用python计算常微分方程?常用形式
odeint(func, y0, t,args,Dfun)
一般这种形式就够用了 。
下面是官方的例子,求解的是
D(D(y1))-t*y1=0
为了方便,采取D=d/dt 。如果我们令初值
y1(0) = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)
D(y1)(0) = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)
这个微分方程的解y1=airy(t) 。
令D(y1)=y0,就有这个常微分方程组 。
D(y0)=t*y1
D(y1)=y0
Python求解该微分方程 。
from scipy.integrate import odeint
from scipy.special import gamma, airy
y1_0 = 1.0/3**(2.0/3.0)/gamma(2.0/3.0)
y0_0 = -1.0/3**(1.0/3.0)/gamma(1.0/3.0)
y0 = [y0_0, y1_0]
def func(y, t):
...return [t*y[1],y[0]]
def gradient(y,t):
...return [[0,t],[1,0]]
x = arange(0,4.0, 0.01)
t = x
ychk = airy(x)[0]
y = odeint(func, y0, t)
y2 = odeint(func, y0, t, Dfun=gradient)
print ychk[:36:6]
[ 0.3550280.3395110.3240680.3087630.2936580.278806]
print y[:36:6,1]
[ 0.3550280.3395110.3240670.3087630.2936580.278806]
print y2[:36:6,1]
[ 0.3550280.3395110.3240670.3087630.2936580.278806]
得到的解与精确值相比,误差相当小 。
=======================================================================================================
args是额外的参数 。
用法请参看下面的例子 。这是一个洛仑兹曲线的求解,并且用matplotlib绘出空间曲线图 。(来自《python科学计算》)
from scipy.integrate import odeint
import numpy as np
def lorenz(w, t, p, r, b):
# 给出位置矢量w , 和三个参数p, r, b 计算出
# dx/dt, dy/dt, dz/dt 的值
x, y, z = w
# 直接与lorenz 的计算公式对应
return np.array([p*(y-x), x*(r-z)-y, x*y-b*z])
t = np.arange(0, 30, 0.01) # 创建时间点
# 调用ode 对lorenz 进行求解, 用两个不同的初始值
track1 = odeint(lorenz, (0.0, 1.00, 0.0), t, args=(10.0, 28.0, 3.0))
track2 = odeint(lorenz, (0.0, 1.01, 0.0), t, args=(10.0, 28.0, 3.0))
# 绘图
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
fig = plt.figure()
ax = Axes3D(fig)
ax.plot(track1[:,0], track1[:,1], track1[:,2])
ax.plot(track2[:,0], track2[:,1], track2[:,2])
plt.show()
===========================================================================
scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0)
计算常微分方程(组)
使用 FORTRAN库odepack中的lsoda解常微分方程 。这个函数一般求解初值问题 。
参数:
func : callable(y, t0, ...)计算y在t0 处的导数 。
y0 : 数组y的初值条件(可以是矢量)
t : 数组为求出y , 这是一个时间点的序列 。初值点应该是这个序列的第一个元素 。
args : 元组func的额外参数
Dfun : callable(y, t0, ...)函数的梯度(Jacobian) 。即雅可比多项式 。
col_deriv : boolean.True , Dfun定义列向导数(更快),否则Dfun会定义横排导数
full_output : boolean可选输出,如果为True 则返回一个字典,作为第二输出 。
printmessg : boolean是否打印convergence 消息 。
返回: y : array, shape (len(y0), len(t))
数组,包含y值,每一个对应于时间序列中的t 。初值y0 在第一排 。
infodict : 字典,只有full_output == True 时 , 才会返回 。
字典包含额为的输出信息 。
键值:
‘hu’vector of step sizes successfully used for each time step.
‘tcur’ vector with the value of t reached for each time step. (will always be at least as large as the input times).
‘tolsf’ vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected.
‘tsw’value of t at the time of the last method switch (given for each time step)
‘nst’cumulative number of time steps
‘nfe’cumulative number of function evaluations for each time step
‘nje’cumulative number of jacobian evaluations for each time step
‘nqu’a vector of method orders for each successful step.
‘imxer’index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise.
‘lenrw’the length of the double work array required.
‘leniw’the length of integer work array required.
‘mused’a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff)
其他参数,官方网站和文档都没有明确说明 。相关的资料,暂时也找不到 。
python的ode函数的介绍就聊到这里吧,感谢你花时间阅读本站内容 , 更多关于python函数ord、python的ode函数的信息别忘了在本站进行查找喔 。

    推荐阅读