python中怎样让数据列转置需求:
你需要转置一个二维数组,将行列互换.
讨论:
你需要确保该数组的行列数都是相同的.比如:
arr = [[1, 2, 3], [4, 5, 6], [7,8, 9], [10, 11, 12]]
列表递推式提供了一个简便的矩阵转置的方法:
print [[r[col] for r in arr] for col in range(len(arr[0]))]
[[1, 4, 7, 10], [2, 5, 8, 11],[3, 6, 9, 12]]
另一个更快和高级一些的方法,可以使用zip函数:
print map(list,
zip(*arr))
本节提供了关于矩阵转置的两个方法,一个比较清晰简单,另一个比较快速但有些隐晦.
有时候,数据到来的时候使用错误的方式,比如,你使用微软的ADO接口访问数据库,由于Python和MS在语言实现上的差别.
Getrows方法在Python中可能返回的是列值,和方法的名称不同.本节给的出的方法就是这个问题常见的解决方案,一个更清晰,一个更快速.
在列表递推式版本中,内层递推式表示选则什么(行),外层递推式表示选择者(列).这个过程完成后就实现了转置.
在zip版本中,我们使用*arr语法将一维数组传递给zip做为参数,接着,zip返回一个元组做为结果.然后我们对每一个元组使用list方法,产生了列表的列表(即矩阵).因为我们没有直接将zip的结果表示为list,
所以我们可以我们可以使用itertools.izip来稍微的提高效率(因为izip并没有将数据在内存中组织为列表).
import itertools
print map(list,
itertools.izip(*arr))
但是,在特定的情况下,上面的方法对效率的微弱提升不能弥补对复杂度的增加.
关于*args和**kwds语法:
*args(实际上,*号后面跟着变量名)语法在Python中表示传递任意的位置变量,当你使用这个语法的时候(比如,你在定义函数时使用),Python将这个变量和一个元组绑定,并保留所有的位置信息,
而不是具体的变量.当你使用这个方法传递参数时,变量可以是任意的可迭代对象(其实可以是任何表达式,只要返回值是迭代器).
**kwds语法在Python中用于接收命名参数.当你用这个方式传递参数时,Python将变量和一个dict绑定,保留所有命名参数,而不是具体的变量值.当你传递参数时,变量必须是dict类型(或者是返回值为dict类型的表达式).
如果你要转置很大的数组,使用Numeric Python或其它第三方包,它们定义了很多方法,足够让你头晕的.
相关说明:
zip(...)
zip(seq1 [,
seq2 [...]]) - [(seq1[0], seq2[0] ...),
(...)]
Return a
list of tuples, where each tuple contains the i-th element
from each of
the argument sequences. The returned list is truncated
in length to
the length of the shortest argument sequence.
Python实现矩阵转置的方法分析Python实现矩阵转置的方法分析
本文实例讲述了Python实现矩阵转置的方法 。分享给大家供大家参考,具体如下:
前几天群里有同学提出了一个问题:手头现在有个列表,列表里面两个元素,比如[1, 2],之后不断的添加新的列表,往原来相应位置添加 。例如添加[3, 4]使原列表扩充为[[1, 3], [2, 4]],再添加[5, 6]扩充为[[1, 3, 5], [2, 4, 6]]等等 。
其实不动脑筋的话,用个二重循环很容易写出来:
【python3中转置函数 pythonlist转置】def trans(m):
a = [[] for i in m[0]]
for i in m:
for j in range(len(i)):
a[j].append(i[j])
return a
m = [[1, 2], [3, 4], [5, 6]]# 想象第一个列表是原始的,后面的是往里添加的
print trans(m)# result:[[1, 3, 5], [ 2, 4, 6]]
然而不管怎么看这种代码都很丑 。
仔细看了一下m这种结构 。等等,这不是字典的iteritems()的结果么?如果dict(m),那么结果——不就是keys()和values()么?
于是利用字典转换一下:
def trans(m):
d = dict(m)
return [d.keys(), d.values()]
可是再仔细想想 , 这里面有bug 。如果添加列表的第一个元素相同,也就是转化之后dict的key相同,那肯定就不行了呀!况且,如果原始列表不是两个,而是多个,肯定不能用字典的呀!于是这种方法作罢,还是好好看看列表的形状 。
然后又是一个不小心的发现:
这种转置矩阵的即时感是怎么回事?
没错,这个问题的本质就是求解转置矩阵 。于是就简单了,还是用个不动脑筋的办法:
def trans(m):
for i in range(len(m)):
for j in range(i):
m[i][j], m[j][i] = m[j][i], m[i][j]
return m
m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
print trans(m)
其实还是有点bug的 , 看起来是好用的,然而这个矩阵要求行列长度相同才行 。
最后 , 群里某大神说:如果只是转置矩阵的话,直接zip就好了 。这才想起来zip的本质就是这样的,取出列表中的对应位置的元素,组成新列表,正是这个题目要做的 。
所以最终,这个题目(转置矩阵)的python解法就相当奇妙了:
def trans(m):
return zip(*d)
没错,就这么简单 。python的魅力 。
python3的sympyprint(“字符串”) , 5/2和5//2的结果是不同的5/2为2.5,5//2为2.
python2需要导入from_future_import division执行普通的除法 。
1/2和1//2的结果0.5和0.
%号为取模运算 。
乘方运算为2**3,-2**3和-(2**3)是等价的 。
from sympy import*导入库
x,y,z=symbols('x y z'),定义变量
init_printing(use_unicode=True)设置打印方式 。
python的内部常量有pi,
函数simplify,simplify(sin(x)**2cos(x)**2)化简结果为1,
simplify((x**3x**2 - x - 1)/(x**22*x1))化简结果为x-1 。化简伽马函数 。simplify(gamma(x)/gamma(x - 2))得(x-2)(x-1) 。
expand((x1)**2)展开多项式 。
expand((x1)*(x - 2) - (x - 1)*x)
因式分解 。factor(x**2*z4*x*y*z4*y**2*z)得到z*(x2*y)**2
from_future_import division
x,y,z,t=symbols('x y z t')定义变量,
k, m, n = symbols('k m n', integer=True)定义三个整数变量 。
f, g, h = symbols('f g h', cls=Function)定义的类型为函数 。
factor_list(x**2*z4*x*y*z4*y**2*z)得到一个列表,表示因式的幂 , (1, [(z, 1), (x2*y, 2)])
expand((cos(x)sin(x))**2)展开多项式 。
expr = x*yx - 32*x**2 - z*x**2x**3,collected_expr = collect(expr, x)将x合并 。将x元素按阶次整合 。
collected_expr.coeff(x, 2)直接取出变量collected_expr的x的二次幂的系数 。
cancel()is more efficient thanfactor().
cancel((x**22*x1)/(x**2x))
, expr = (x*y**2 - 2*x*y*zx*z**2y**2 - 2*y*zz**2)/(x**2 - 1) , cancel(expr)
expr = (4*x**321*x**210*x12)/(x**45*x**35*x**24*x),apart(expr)
asin(1)
trigsimp(sin(x)**2cos(x)**2)三角函数表达式化简,
trigsimp(sin(x)**4 - 2*cos(x)**2*sin(x)**2cos(x)**4)
trigsimp(sin(x)*tan(x)/sec(x))
trigsimp(cosh(x)**2sinh(x)**2)双曲函数 。
三角函数展开,expand_trig(sin(xy)) , acos(x),cos(acos(x)) , expand_trig(tan(2*x))
x, y = symbols('x y', positive=True)正数,a, b = symbols('a b', real=True)实数,z, t, c = symbols('z t c')定义变量的方法 。
sqrt(x) == x**Rational(1, 2)判断是否相等 。
powsimp(x**a*x**b)幂函数的乘法,不同幂的乘法,必须先定义a和b 。powsimp(x**a*y**a)相同幂的乘法 。
powsimp(t**c*z**c),注意,powsimp()refuses to do the simplification if it is not valid.
powsimp(t**c*z**c, force=True)这样的话就可以得到化简过的式子 。声明强制进行化简 。
(z*t)**2,sqrt(x*y)
第一个展开expand_power_exp(x**(ab)),expand_power_base((x*y)**a)展开,
expand_power_base((z*t)**c, force=True)强制展开 。
powdenest((x**a)**b) , powdenest((z**a)**b),powdenest((z**a)**b, force=True)
ln(x),x, y ,z= symbols('x y z', positive=True),n = symbols('n', real=True),
expand_log(log(x*y))展开为log(x)log(y) , 但是python3没有 。这是因为需要将x定义为positive 。这是必须的,否则不会被展开 。expand_log(log(x/y)),expand_log(log(x**n))
As withpowsimp()andpowdenest(),expand_log()has aforceoption that can be used to ignore assumptions 。
expand_log(log(z**2), force=True),强制展开 。
logcombine(log(x)log(y)),logcombine(n*log(x)) , logcombine(n*log(z), force=True) 。
factorial(n)阶乘,binomial(n, k)等于c(n,k),gamma(z)伽马函数 。
hyper([1, 2], [3], z),
tan(x).rewrite(sin)得到用正弦表示的正切 。factorial(x).rewrite(gamma)用伽马函数重写阶乘 。
expand_func(gamma(x3))得到,x*(x1)*(x2)*gamma(x),
hyperexpand(hyper([1, 1], [2], z)),
combsimp(factorial(n)/factorial(n - 3))化简,combsimp(binomial(n 1, k 1)/binomial(n, k))化简 。combsimp(gamma(x)*gamma(1 - x))
自定义函数
def list_to_frac(l):
expr = Integer(0)
for i in reversed(l[1:]):
expr= i
expr = 1/expr
return l[0]expr
list_to_frac([x, y, z])结果为x1/z , 这个结果是错误的 。
syms = symbols('a0:5'),定义syms,得到的结果为(a0, a1, a2, a3, a4) 。
这样也可以a0, a1, a2, a3, a4 = syms,可能是我的操作错误。发现python和自动缩进有关,所以一定看好自动缩进的距离 。list_to_frac([1, 2, 3, 4])结果为43/30 。
使用cancel可以将生成的分式化简,frac = cancel(frac)化简为一个分数线的分式 。
(a0*a1*a2*a3*a4a0*a1*a2a0*a1*a4a0*a3*a4a0a2*a3*a4a2a4)/(a1*a2*a3*a4a1*a2a1*a4a3*a41)
a0, a1, a2, a3, a4 = syms定义a0到a4,frac = apart(frac, a0)可将a0提出来 。frac=1/(frac-a0)将a0去掉取倒 。frac = apart(frac, a1)提出a1 。
help("modules"),模块的含义,help("modules yourstr")模块中包含的字符串的意思 。,
help("topics"),import os.pathhelp("os.path"),help("list"),help("open")
# -*- coding: UTF-8 -*-声明之后就可以在ide中使用中文注释 。
定义
l = list(symbols('a0:5'))定义列表得到[a0, a1, a2, a3, a4]
fromsympyimport*
x,y,z=symbols('x y z')
init_printing(use_unicode=True)
diff(cos(x),x)求导 。diff(exp(x**2), x),diff(x**4, x, x, x)和diff(x**4, x, 3)等价 。
diff(expr, x, y, 2, z, 4)求出表达式的y的2阶,z的4阶,x的1阶导数 。和diff(expr, x, y, y, z, 4)等价 。expr.diff(x, y, y, z, 4)一步到位 。deriv = Derivative(expr, x, y, y, z, 4)求偏导 。但是不显示 。之后用deriv.doit()即可显示
integrate(cos(x), x)积分 。定积分integrate(exp(-x), (x, 0, oo))无穷大用2个oo表示 。integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))二重积分 。print(expr)print的使用 。
expr = Integral(log(x)**2, x) , expr.doit()积分得到x*log(x)**2 - 2*x*log(x)2*x 。
integ.doit()和integ = Integral((x**4x**2*exp(x) - x**2 - 2*x*exp(x) - 2*x -
exp(x))*exp(x)/((x - 1)**2*(x1)**2*(exp(x)1)), x)连用 。
limit(sin(x)/x,x,0),not-a-number表示nan算不出来,limit(expr, x, oo),,expr = Limit((cos(x) - 1)/x, x, 0) , expr.doit()连用 。左右极限limit(1/x, x, 0, ' ') , limit(1/x, x, 0, '-') 。。
Series Expansion级数展开 。expr = exp(sin(x)) , expr.series(x, 0, 4)得到1xx**2/2O(x**4) , ,x*O(1)得到O(x),,expr.series(x, 0, 4).removeO()将无穷小移除 。exp(x-6).series(x,x0=6), , 得到
-5(x - 6)**2/2(x - 6)**3/6(x - 6)**4/24(x - 6)**5/120xO((x - 6)**6, (x, 6))最高到5阶 。
f=Function('f')定义函数变量和h=Symbol('h')和d2fdx2=f(x).diff(x,2)求2阶 , ,as_finite_diff(dfdx)函数和as_finite_diff(d2fdx2,[-3*h,-h,2*h]),,x_list=[-3,1,2]和y_list=symbols('a b c')和apply_finite_diff(1,x_list,y_list,0) 。
Eq(x, y), , solveset(Eq(x**2, 1), x)解出来x,当二式相等 。和solveset(Eq(x**2 - 1, 0), x)等价 。solveset(x**2 - 1, x)
solveset(x**2 - x, x)解,solveset(x - x, x, domain=S.Reals)解出来定义域 。solveset(exp(x), x)# No solution exists解出EmptySet()表示空集 。
等式形式linsolve([xyz - 1, xy2*z - 3 ], (x, y, z))和矩阵法linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))得到{(-y - 1, y, 2)}
A*x = b 形式,M=Matrix(((1,1,1,1),(1,1,2,3))),system=A,b=M[:,:-1],M[:,-1],linsolve(system,x,y,z),,solveset(x**3 - 6*x**29*x, x)解多项式 。roots(x**3 - 6*x**29*x, x),得出 , {3: 2, 0: 1},有2个3的重根,1个0根 。solve([x*y - 1, x - 2], x, y)解出坐标 。
f, g = symbols('f g', cls=Function)函数的定义 , 解微分方程diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x)f(x), sin(x))再和dsolve(diffeq,f(x))结合 。得到Eq(f(x), (C1C2*x)*exp(x)cos(x)/2),dsolve(f(x).diff(x)*(1 - sin(f(x))), f(x))解出来Eq(f(x)cos(f(x)), C1),,
Matrix([[1,-1],[3,4],[0,2]]),,Matrix([1, 2, 3])列表示 。M=Matrix([[1,2,3],[3,2,1]])
N=Matrix([0,1,1])
M*N符合矩阵的乘法 。M.shape显示矩阵的行列数 。
M.row(0)获取M的第0行 。M.col(-1)获取倒数第一列 。
M.col_del(0)删掉第1列 。M.row_del(1)删除第二行,序列是从0开始的 。M = M.row_insert(1, Matrix([[0, 4]]))插入第二行,,M = M.col_insert(0, Matrix([1, -2]))插入第一列 。
M N矩阵相加 , M*N,3*M,M**2,M**-1,N**-1表示求逆 。M.T求转置 。
eye(3)单位 。zeros(2, 3) , 0矩阵,ones(3, 2)全1,diag(1, 2, 3)对角矩阵 。diag(-1, ones(2, 2), Matrix([5, 7, 5]))生成Matrix([
[-1, 0, 0, 0],
[ 0, 1, 1, 0],
[ 0, 1, 1, 0],
[ 0, 0, 0, 5],
[ 0, 0, 0, 7],
[ 0, 0, 0, 5]])矩阵 。
Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]])
一行一行显示, , M.det()求行列式 。M.rref()矩阵化简 。得到结果为Matrix([
[1, 0,1,3],
[0, 1, 2/3, 1/3],
[0, 0,0,0]]), [0, 1]) 。
M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]]) , M.nullspace()
Columnspace
M.columnspace()和M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]])
M = Matrix([[3, -2,4, -2], [5,3, -3, -2], [5, -2,2, -2], [5, -2, -3,3]])和M.eigenvals()得到{3: 1, -2: 1, 5: 2}, , This means thatMhas eigenvalues -2, 3, and 5, and that the eigenvalues -2 and 3 have algebraic multiplicity 1 and that the eigenvalue 5 has algebraic multiplicity 2.
P, D = M.diagonalize(),P得Matrix([
[0, 1, 1,0],
[1, 1, 1, -1],
[1, 1, 1,0],
[1, 1, 0,1]]),,D为Matrix([
[-2, 0, 0, 0],
[ 0, 3, 0, 0],
[ 0, 0, 5, 0],
[ 0, 0, 0, 5]])
P*D*P**-1 == M返回为True 。lamda = symbols('lamda') 。
lamda = symbols('lamda')定义变量,p = M.charpoly(lamda)和factor(p)
expr = x**2x*y,srepr(expr)可以将表达式说明计算法则,"Add(Pow(Symbol('x'), Integer(2)), Mul(Symbol('x'), Symbol('y')))" 。。
x = symbols('x')和x = Symbol('x')是一样的 。srepr(x**2)得到"Pow(Symbol('x'), Integer(2))" 。Pow(x, 2)和Mul(x, y)得到x**2 。x*y
type(2)得到class 'int',type(sympify(2))得到class 'sympy.core.numbers.Integer'..srepr(x*y)得到"Mul(Symbol('x'), Symbol('y'))" 。。。
Add(Pow(x, 2), Mul(x, y))得到"Add(Mul(Integer(-1), Pow(Symbol('x'), Integer(2))), Mul(Rational(1, 2), sin(Mul(Symbol('x'), Symbol('y')))), Pow(Symbol('y'), Integer(-1)))" 。。Pow函数为幂次 。
expr = Add(x, x) , expr.func 。。Integer(2).func,class 'sympy.core.numbers.Integer',,Integer(0).func和Integer(-1).func,,,expr = 3*y**2*x和expr.func得到class 'sympy.core.mul.Mul',,expr.args将表达式分解为得到(3, x, y**2), , expr.func(*expr.args)合并 。expr == expr.func(*expr.args)返回True 。expr.args[2]得到y**2,expr.args[1]得到x,expr.args[0]得到3. 。
expr.args[2].args得到(y, 2) 。。y.args得到空括号 。Integer(2).args得到空括号 。
from sympy import *
E**(I*pi) 1,可以看出,I和E,pi已将在sympy内已定义 。
x=Symbol('x'),,expand( E**(I*x) )不能展开,expand(exp(I*x),complex=True)可以展开 , 得到I*exp(-im(x))*sin(re(x))exp(-im(x))*cos(re(x)),,x=Symbol("x",real=True)将x定义为实数 。再展开expand(exp(I*x),complex=True)得到 。I*sin(x)cos(x) 。。
tmp = series(exp(I*x), x, 0, 10)和pprint(tmp)打印出来可读性好,print(tmp)可读性不好 。。pprint将公式用更好看的格式打印出来,,pprint( series( cos(x), x, 0, 10) )
integrate(x*sin(x), x) , ,定积分integrate(x*sin(x), (x, 0, 2*pi)) 。。
用双重积分求解球的体积 。
x, y, r = symbols('x,y,r')和2 * integrate(sqrt(r*r-x**2), (x, -r, r))计算球的体积 。计算不来 , 是因为sympy不知道r是大于0的 。r = symbols('r', positive=True)这样定义r即可 。circle_area=2*integrate(sqrt(r**2-x**2),(x,-r,r))得到 。circle_area=circle_area.subs(r,sqrt(r**2-x**2))将r替换 。
integrate(circle_area,(x,-r,r))再积分即可 。
expression.sub([(x,y),(y,x)])又换到原来的状况了 。
expression.subs(x, y),,将算式中的x替换成y 。。
expression.subs({x:y,u:v}) : 使用字典进行多次替换 。。
expression.subs([(x,y),(u,v)]) : 使用列表进行多次替换 。。
python里x=randn mat=x.T.dot 是求什么x=randn这个写法是不对python3中转置函数的 。
randn是numpy里python3中转置函数的一个生成随机arraypython3中转置函数的函数 。
比如说要生成一个三行两列的随机arraypython3中转置函数,可以这样写:
import numpy
x = numpy.random.randn(3,2)
像这样:
后面这个mat=x.T.dot(...)是先求这个3*3矩阵的转置(.T),再求与点积(.dot)
点积就是矩阵各个对应元素相乘, 这个时候要求两个矩阵必须同样大小 。
其实可以分步来的,就知道做了什么运算了 。
像这样:
dot(2)是点乘常数就不说了,
那个x.T.dot([1,2,3])就是x.T的
1*1 2*2 3*3=14
2*1 3*2 4*3=20
懂了木有 = 。=
python3中转置函数的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于pythonlist转置、python3中转置函数的信息别忘了在本站进行查找喔 。
推荐阅读
- 虎牙星魂直播间怎么进,虎牙星魂直播间怎么进去
- mcopy函数c语言,c语言函数pow
- oracle存储过程跑不动,oracle存储过程有缓存吗
- shopee直播设备,shopify直播
- 怎么改oracle字符集 更改oracle字符集
- redis与html互联,redis helm
- 怎么给手机叠被套,怎么叠放手机的东西
- 包含腾讯视频如何移到ppt中的词条
- oracle邮箱怎么验证 oracle邮箱注册